라틴어 문장 검색

Attamen oscillationes ob parvitatem virium agitantium essent longè tardissimae:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 54:4)
Sic inter mercennarium amicamque positus senex veluti oscillatione ludebat.
(페트로니우스, 사티리콘, TITI PETRONI ARBITRI SATYRICON 140:11)
Definire & velocitates Pendulorum in locis singulis, & Tempora quibus tum oscillationes totae, tum singulae oscillationum partes peraguntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 31:1)
Paribus igitur Pendulorum velocitatibus motus aequales in aere oscillationibus 535 & in aqua oscillationibus 123/110 amissi sunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 97:5)
adeo ut Cycloidum perimetri & perimetrorum partes similes, aequalia erunt tempora quibus perimetrorum partes similes Oscillationibus similibus describuntur, & propterea Oscillationes omnes erunt Isochronae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:3)
Si corpora Funependula resistuntur in duplicata ratione velocitatum, differentiae inter tempora oscillationum in Medio resistente ac tempora oscillationum in ejusdem gravitatis specificae Medio non resistente, erunt arcubus oscillando descriptis proportionales, quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 20:1)
Nam tempora oscillationum pyxidis plenae minora sunt quam tempora oscillationum pyxidis vacuae, & propterea resistentia pyxidis plenae in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:8)
) si distantiae inter undarum loca altissima A, C, E, & infima B, D, F aequentur duplae penduli longitudini, partes altissimae A, C, E tempore oscillationis unius evadent infimae, & tempore oscillationis alterius denuo ascendent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:10)
cum tempora quibus corpora describant singulas arcuum partes correspondentes sint ut tempora oscillationum totarum, erunt velocitates ad invicem in correspondentibus oscillationum partibus, ut vires motrices & tota oscillationum tempora directe & quantitates materiae reciproce:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 3:6)
Unde cum in Oscillationibus inaequalibus describantur aequalibus temporibus arcus totis Oscillationum arcubus proportionales, habentur ex datis temporibus & velocitates & arcus descripti in Oscillationibus universis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:15)
Est ergo tempus totum in circulo HKM, Oscillationi in una Cycloide respondens, ad tempus totum in circulo hkm Oscillationi in altera Cycloide respondens, ut semiperiferia HKM ad medium proportionale inter hanc semiperiferiam & semiperiferiam circuli alterius hkm, id est in dimidiata ratione diametri HM ad diametrum hm, hoc est in dimidiata ratione perimetri Cycloidis primae ad perimetrum Cycloidis alterius, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:11)
Ideoque cum punctum M, ubi corpus versatur in medio oscillationis loco O, incidat circiter in punctum P, & priore oscillationis parte versetur inter A & P, posteriore autem inter P & a, utroque in casu aequaliter a puncto P in partes contrarias errans:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:20)
Hinc ex oscillationum temporibus, in Medio resistente in arcubus inaequalibus factarum, cognosci possunt tempora oscillationum in ejusdem gravitatis specificae Medio non resistente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 22:2)
oscillatione mediocri a Nodo descriptus, ad arcum totum 67-1/8, oscillatione mediocri a centro Globi descriptum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:9)
Et propterea si oscillationes in aqua in ea ratione accelerarentur ut motus pendulorum in Medio utroque fierent aequiveloces, numerus oscillationum 1-1/5 in aqua, quibus motus idem ac prius amitteretur (ob resistentiam auctam in ratione illa duplicata & tempus diminutum in ratione eadem simplici) diminueretur in eadem illa ratione 44 ad 41, adeoque evaderet 1-1/5 in 41/44 seu 123/110.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 97:4)

SEARCH

MENU NAVIGATION