라틴어 문장 검색

dico quod figuris, quas corpora sic mota describunt circum se mutuo, potest figura similis & aequalis, circum corpus alterutrum immotum, viribus iisdem describi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 6:2)
& curva pqv quam punctum p, revolvendo circum punctum immotum s, describit, erit similis & aequalis curvis quas corpora S, P describunt circum se mutuo:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 7:3)
Corporum duorum S & P circa commune gravitatis centrum C revolventium tempus periodicum esse ad tempus periodicum corporis alterutrius P, circa alterum immotum S gyrantis & figuris quae corpora circum se mutuo describunt figuram similem & aequalem describentis, in dimidiata ratione corporis alterius S, ad summam corporum S + P.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 15:1)
una tendente ad S & oriunda a mutua attractione corporum S & P. Hac vi sola corpus P, circum corpus S sive immotum, sive hac attractione agitatum, describere deberet & areas, radio PS temporibus proportionales, & Ellipsin cui umbilicus est in centro corporis S. Patet hoc per Prob. VI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:10)
Si superficies ob latitudinem infinite diminutam jamjam evanescens EFfe, convolutione sui circa axem PS, describat solidum Sphaericum concavo-convexum, ad cujus particulas singulas aequales tendant aequales vires centripetae:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 65:1)
Etenim stantibus quae in Lemmate & Theoremate novissimo constructa sunt, concipe axem Sphaerae AB dividi in particulas innumeras aequales Dd, & Sphaeram totam dividi in totidem laminas Sphaericas concavo-convexas EFfe;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 70:1)
Idem, per Exempla illa & Theorema XLI inter se collata, facile colligitur de attractionibus corporum versus Orbes concavo-convexos, sive corpora attracta collocentur extra Orbes, sive intra in eorum cavitatibus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 6:3)
Nam punctum suspensionis in quo annulus uncum tangit, immotum manere debet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:8)
Parabam igitur uncum firmum, ut punctum suspensionis immotum maneret, & tunc omnia ita evenerunt uti supra descripsimus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 107:7)
Motus omnis per Fluidum propagatus divergit a recto tramite in spatia immota.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 8:1)
Igitur quoniam aqua in undarum jugis altior est quam in Fluidi partibus immotis LK, NO, defluet eadem de jugorum terminis e, g, i, l, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 9:5)
& quoniam in undarum vallibus depressior est quam in Fluidi partibus immotis KL, NO;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 9:8)
defluet eadem de partibus illis immotis in undarum valles.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 9:9)
pulsus illi eadem celeritate sese dilatabunt undique in spatia immota KL, NO, qua propagantur directe a centro A;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:10)
Si impressio in Orbem aliquem major est vel minor, ex parte concava quàm ex parte convexa, praevalebit impressio fortior, & motum Orbis vel accelerabit vel retardabit prout in eandem regionem cum ipsius motu, vel in contrariam dirigitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:4)

SEARCH

MENU NAVIGATION