라틴어 문장 검색

Eadem Methodo determinari potest attractio corpusculi siti intra Sphaeram, sed expeditius per Theorema sequens.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 98:1)
Theorema vero sic demonstratur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 102:14)
Idem, per Exempla illa & Theorema XLI inter se collata, facile colligitur de attractionibus corporum versus Orbes concavo-convexos, sive corpora attracta collocentur extra Orbes, sive intra in eorum cavitatibus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 6:3)
Corpus igitur inter descendendum, tempore quovis ABrL, describit spatium Blr, & tempore LrtN spatium rlnt. Q. E. D. Et similis est demonstratio motus expositi in ascensu. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:31)
Eadem Demonstratione colligitur etiam (per Prop. XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 20:2)
Nam similis est horum Casuum Demonstratio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 23:18)
conficient pressiones AH, BI, CK, quibus fundum ATV (juxta Theorema XIV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:10)
Res manifesta est, nec indiget demonstratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 65:4)
Optarim itaque (cum demonstratio vacui ex his dependeat) ut experimenta cum Globis & pluribus & majoribus & magis accuratis tentarentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 90:3)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Patet hoc ex demonstratione casus primi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:6)
& verisimile est quod, etiamsi Demonstrationum gratia Hypothesin talem initio Sectionis hujus proposuerim ut Resistentia velocitati proportionalis esset, tamen Resistentia in minori sit ratione quàm ea velocitatis est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:11)
Unde tale confit Theorema, quod incrementum ponderis, pergendo ab AEquatore ad Polos, sit quam proximè ut Sinus versus latitudinis duplicatae, vel quod perinde est ut quadratum Sinus recti Latitudinis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:1)
In hac demonstratione supposui angulum BEG, qui distantia est Nodorum à Quadraturis, uniformiter augeri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 33:1)
Constructionis hujus demonstratio ex Lemmatibus consequitur:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 9:1)

SEARCH

MENU NAVIGATION