라틴어 문장 검색

Tum centro S, intervallo aequante dimidium lateris recti, describatur circulus HKk, & ad corporis ascendentis vel descendentis loca duo quaevis G, C, erigantur perpendicula GI, CD occurrentia Conicae Sectioni vel circulo in I ac D. Dein junctis SI, SD, fiant segmentis SEIS, SEDS Sectores HSK, HSk aequales, & per Theorema XI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:6)
Sint AHKB, ahkb aequales duae superficies Sphaericae, centris S, s, diametris AB, ab descriptae, & P, p corpuscula sita extrinsecus in diametris illis productis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 8:1)
Ponatur indefinite, quod linea AGK Hyperbola sit, centro X Asymptotis MX, NX, ea lege descripta, ut constructo rectangulo XZDN cujus latus ZD secet Hyperbolam in G & Asymptoton ejus in V, fuerit VG reciproce ut ipsius ZX vel DN dignitas aliqua ND^n, cujus index est numerus n:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 81:2)
Concipe lineas curvas in plano describi, dein circa axes quosvis datos per centrum virium transeuntes revolvi, & ea revolutione superficies curvas describere;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 9:2)
Unde datur tum tempus descensus de loco quovis ad centrum, tum tempus huic aequale quo corpus uniformiter circa centrum globi ad distantiam quamvis revolvendo arcum quadrantalem describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 38:4)
Est igitur gravitas in A in Sphaeram centro C radio AC descriptam, ad gravitatem in A in Terram ut 126 ad 125½, & gravitas in loco Q in Sphaeram centro C radio QC descriptam, est ad gravitatem in loco A in Sphaeram centro C radio AC descriptam, in ratione diametrorum (per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:12)
describerent corpus Q ex una parte, & commune centrum aliorum duorum ex altera parte, circa commune omnium centrum quiescens, Ellipses accuratas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 81:6)
Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 20:1)
Fluit enim a multis stellis et sitibus et imaginibus et radiationibus et coniunctionibus et praeventionibus et multiplicibus angulis, qui describuntur ex intersecationibus radiorum caelestium corporum et productione radiorum super centrum, in quo solo, sicut dicit Ptolemaeus, omnes virtutes eorum quae sunt in caelesti circulo, congregantur et adunantur.
(알베르투스 마그누스, De Fato, Art. 2. Quid sit fatum 7:5)
Centris B, C, intervallis BK, CL, describe circulos duos, & ad rectam KL, quae tangat eosdem in K & L, demitte perpendiculum SG, idemq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 16:4)
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiae locorum a centro, spatia definire quae corpus recta cadendo datis temporibus describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 3:1)
Si corpus non cadit perpendiculariter describet id sectionem aliquam Conicam cujus umbilicus inferior congruit cum centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:2)
Posito quod vis centripeta proportionalis sit altitudini seu distantiae locorum a centro, dico quod cadentium tempora, velocitates & spatia descripta sunt arcubus arcuumq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 33:1)
Hypoth. V. Planetas circumjoviales, radiis ad centrum Jovis ductis, areas describere temporibus proportionales, eorumque tempora periodica esse in ratione sesquialtera distantiarum ab ipsius centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 10:1)
quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:9)

SEARCH

MENU NAVIGATION