라틴어 문장 검색

nam id esset, nec recuperatores potius darent quam iudicem nec in universam familiam, sed in eum cum nominatim ageretur, nec in quadruplum, sed in duplum, et 'damnvm' adderetur 'inivria.
(마르쿠스 툴리우스 키케로, PRO M. TVLLIO ORATIO, 17장 2:2)
nam alia quoque sunt contrariorum genera, velut ea quae cum aliquo conferuntur, ut duplum simplum, multa pauca, longum breve, maius minus.
(마르쿠스 툴리우스 키케로, 토피카, 11장 4:1)
Pendeant corpora A, B filis parallelis AC, BD a centris C, D. His centris & intervallis describantur semicirculi EAF, GBH radijs CA, DB bisecti.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:8)
Est autem tempus ut area SPQ, ejus dupla SP × QT, id est ut SP & QT conjunctim, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:6)
Unde si datur corporis velocitas in vertice principali D, invenietur Orbita expedite, capiendo scilicet latus rectum ejus, ad duplam distantiam DS, in duplicata ratione velocitatis hujus datae ad velocitatem corporis in circulo ad distantiam DS gyrantis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 51:2)
Nam centro O intervallo OA describatur semicirculus AQB, & arcui AQ occurrat LP producta in Q, junganturq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 18:1)
C & intervallo CG describatur semicirculus GFO.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:7)
Sit sectio illa Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est, super hujus axe majore AB describatur semicirculus ADB, & per corpus decidens transeat recta DPC perpendicularis ad axem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:4)
Sit autem AP via tota curvilinea descripta ex quo Rota globum tetigit in A, & erit viae hujus longitudo AP ad duplum sinum versum arcus ½PB, ut 2CE ad CB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:4)
BV - VP sinus versus ejusdem anguli, & propterea in hac Rota cujus radius est ½BV, erit BV - VP duplus sinus versus arcus ½BP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:11)
Ergo AP est ad duplum sinum versum arcus ½BP ut 2CE ad CB. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:12)
Hinc si describatur Cyclois integra ASL & bisecetur ea in S, erit longitudo partis PS ad longitudinem VP (quae duplus est sinus anguli VBP, existente EB radio) ut 2CE ad CB atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 18:2)
Est igitur TP ad VP (duplum sinum anguli VBP existente ½BV radio) ut BW ad BV, seu AO + OR ad AO, id est (cum sint CA ad CO, CO ad CR & divisim AO ad OR proportionales,) ut CA + CO seu 2CE ad CA.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 25:5)
Centro quovis G, intervallo GH Cycloidis arcum RS aequante, describe semicirculum HKMG semidiametro GK bisectum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:1)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)

SEARCH

MENU NAVIGATION