라틴어 문장 검색

) vis qua Ellipsis circa umbilicum S describitur tendere debeat ad umbilicum illum, & esse quadrato distantiae PS reciproce proportionalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:19)
Si corpus aliquod vi reciproce proportionali quadrato distantiae suae a centro, revolveretur circa hoc centrum in Ellipsi, & mox, in descensu ab Apside summa seu Auge ad Apsidem imam, vis illa per accessum perpetuum vis novae augeretur in ratione plusquam duplicata distantiae diminutae:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 61:2)
describerent corpus Q ex una parte, & commune centrum aliorum duorum ex altera parte, circa commune omnium centrum quiescens, Ellipses accuratas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 81:6)
In Systemate corporum, quorum vires decrescunt in ratione duplicata distantiarum, si minora circa maximum in Ellipsibus umbilicum communem in maximi illius centro habentibus quam fieri potest accuratissimis revolvantur, & radiis ad maximum illud ductis describant areas temporibus quam maxime proportionales:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 88:2)
& vis qua harum una attrahet alteram erit etiamnum (per argumentum superius) in eadem illa distantiae quadratae ratione inversa. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 36:14)
& propterea si corpus illud attrahens vel quiescat, vel progrediatur uniformiter in directum, corpus attractum movebitur in Ellipsi centrum habente in attrahentis centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 17:3)
si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 21:4)
Si resistentia sit ut velocitas, Figura aBKkT Ellipsis erit quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:1)
adeoque figura BKVTa Ellipsis, quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:6)
& Ellipsis, centro O, semiaxibus OB, OV descripta, figuram aBKVT, eique aequale rectangulum Aa × BO, aequabit quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:8)
Nam cum Ellipsis vel Parabola congruat cum figura BKVTa in puncto medio V, haec si ad partem alterutram BKV vel VTa excedit figuram illam, deficiet ab eadem ad partem alteram, & sic eidem aequabitur quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 47:2)
Omnem vero in casu quocunque reddi nec rationi consentaneum videtur, neque cum experimentis hactenus a me tentatis bene quadrat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 63:6)
Igitur motus sonorum, secundum calculum Geometricum superius allatum, inter hos limites consistens, quadrat cum Phaenomenis, quatenus hactenus tentare licuit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:33)
Nam Planetae secundum Hypothesin Copernicaeam circa Solem delati revolvuntur in Ellipsibus umbilicum habentibus in Sole, & radiis ad Solem ductis areas describunt temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:2)
Planetae moventur in Ellipsibus umbilicum habentibus in centro Solis, & radiis ad centrum illud ductis areas describunt temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 9:1)

SEARCH

MENU NAVIGATION