라틴어 문장 검색

et quantoscunque angulos habuerit figura, super quam pyramis residet, tot ipsa per latera triangulis continetur, ut ex subiectis descriptionibus palam est.
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:2)
Hanc autem pyramidum generationem monstrat subiecta descriptio.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:12)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)
VIIII vero tetragonus, quoniam tres habet in latere et factus est ex tribus in se multiplicatis, si ei unam lateris multiplicationem adiunxeris, rursus alius cybus aequabili laterum formatione concrescit.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:8)
Et sequentes quidem tetragoni secundum eundem modum multiplicatione facta provehuntur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:11)
Quicunque igitur facti sunt, procreabuntur parte altera longiores, ut subiecta descriptio docet, in qua, ex quibus numeris multiplicati nascuntur parte altera longiores, super adscripti sunt, qui vero nascuntur, subterius sunt notati.
(보이티우스, De Arithmetica, Liber secundus, De parte altera longioribus numeris eorumque generationibus 1:7)
Nascuntur autem ex superiore descriptione et ex primo ordine omnes tetragoni hoc modo.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:6)
Quod si continuatim quis faciat, cunctos huiusmodi numeros in conpetenti ordine procreatos videbit, quam descriptionem scilicet inferior forma demonstrat.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:14)
ut sunt multiplicationes, quae a quinario vel a senario proficiscuntur.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:2)
Si enim faciat semel unum, unus redit, si hoc semel, idem est, et si hoc rursus semel, idem est. Igitur si una fuerit multiplicatio, solam planitudinem reddit et fit circulus, si secunda, mox sphera conficitur.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:12)
Etenim secunda multiplicatio effectrix semper est profunditatis.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:13)
et ad eundem modum usque in finem descriptionis geminatis huiusmodi partibus, sicut ipsa quoque summarum comparatio geminata est, aequas partium progressiones aspicies.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:7)
Ipsi vero cybi, qui quamquam tribus intervallis sublati sint, tamen propter aequalem multiplicationem participant inmutabilis substantiae eiusdemque naturae sunt socii, non aliorum quam inparium coacervatione producuntur, nunquam vero parium.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:1)
Hoc autem diligentius subiecta descriptio docet.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 3:5)
Inde etiam in Aristotelica atque Archytae prius decem praedicamentorum descriptione Pythagoricum denarium manifestum est inveniri;
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:6)

SEARCH

MENU NAVIGATION