라틴어 문장 검색

Solis igitur & Lunae in AEquatore versantium & mediocriter à Terra distantium, sunto vires S & L. Et quoniam Luna in Quadraturis, tempore verno & autumnali extra AEquatorem in declinatione graduum plus minus 23½ versatur, & Luminaris ab AEquatore declinantis vis ad mare movendum minor sit, idque (quantum sentio) in duplicata ratione Sinus complementi declinationis quam proximè, vis Lunae in Quadraturis, (cum sinus ille sit ad radium ut 91706 ad 100000) erit 841/1000 L, & summa virium in Syzygiis erit L + S, ac differentia in Quadraturis 841/1000 L - S, adeoque L + S erit ad 841/1000 L - S ut 45 ad 25 seu 9 ad 5, & inde 5L + 5S aequalis erit 7569/1000 L - 9S, & 14S aequalis 2569/1000 L, & propterea L ad S ut 14000 ad 2569 seu 5-7/15 ad 1.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 45:4)
& si centro C radio CP describi intelligatur sphaera Pape;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:2)
sit autem QR planum, cui recta à centro Solis ad centrum Terrae ducta normaliter insistit;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:3)
Rursus hic motus, ob inclinationem plani AEquatoris ad planum Eclipticae, minuendus est, idque in ratione Sinus complementi inclinationis ad Radium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 8:1)
Nam distantia particulae cujusque terrestris à plano QR, quo tempore particula illa à plano Eclipticae longissimè distat, in Tropico suo (ut ita dicam) consistens, diminuitur, per inclinationem planorum Eclipticae & AEquatoris ad invicem, in ratione Sinus complementi inclinationis ad Radium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 8:2)
in ratione Sinus 91706 (qui sinus est complementi graduum 23½) ad Radium 100000.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 8:9)
In longitudine media tB sumatur utcunque punctum B, & inde versus Solem S ducatur linea BE, quae sit ad Sagittam tV, ut contentum sub SB & St quadrato ad cubum hypotenusae trianguli rectanguli, cujus latera sunt SB & tangens latitudinis Cometae in observatione secunda ad radium tB.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:2)
sinistrum brachium eo usque adlevandum est, ut quasi normalem angulum faciat, super quod ora ex toga duplex aequaliter sedeat.
(퀸틸리아누스, 변론 가정 교육, Liber XI 288:2)
et per ea signa et centrum A lineae ad extrema lineae circinationis sunt perducendae, ubi erunt litterae Q et R. haec erit linea προ`σ ὀρθᾶσ radio aequinoctiali.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 7장21)
Est autem vis mediocris QN vel QS, qua corpus retinetur in orbe suo circum Q, ad vim qua corpus P retinetur in Orbe suo circum S, in ratione composita ex ratione radii QS ad radium PS, & ratione duplicata temporis periodici corporis P circum S ad tempus periodicum corporis S circum Q. Et ex aequo, vis mediocris LM, ad vim qua corpus P retinetur in Orbe suo circum S (quave corpus idem P eodem tempore periodico circum punctum quodvis immobile S ad distantiam PS revolvi posset) est in ratione illa duplicata periodicorum temporum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 69:3)
Decrementum autem in locis inter Octantes & Syzygias, & incrementum in locis inter Octantes & Quadraturas, est quam proxime ad hoc decrementum, ut motus totus in locis illis ad motum totum in Syzygiis & differentia inter quadratum Sinus distantiae Lunae à Quadratura & semissem quadrati Radii ad semissem quadrati Radii, conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:13)
O polum, OD radium abscindentem, OA radium ordinatum primum & Oa (quo parallelogrammum OABa completur) radium ordinatum novum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 65:11)
summa virium in dato tempore erit ut velocitas illa & numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium circuli, id est ut quadratum longitudinis illius applicatum ad Radium;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:5)
est ad vim qua Luna in circulo circa Terram quiescentem tempore suo periodico revolvi posset, ut 3IT ad Radium circuli multiplicatum per numerum 178,725, sive ut IT ad Radium multiplicatum per 59,575.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:13)
angulum X (aequationem secundam) ad angulum Z (aequationem maximam secundam) ut est sinus versus anguli T duplicati ad radium duplicatum, vel (quod eodem recidit) ut est quadratum sinus anguli T ad quadratum Radii.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:10)

SEARCH

MENU NAVIGATION