라틴어 문장 검색

Quo pacto tangens anguli CSP jam erit ad tangentem motus medii ut 68-5958/10000 ad 69-11/12, & angulus CSP in Octantibus, ubi motus medius est 45 gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:8)
& propterea momentum mediocre in Octantibus est ad excessum in Syzygiis, defectumque in Quadraturis, ut numerorum semisumma 11023 ad eorundem semidifferentiam 50.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:4)
Unde cum tempus Lunae in singulis Orbis particulis aequalibus sit reciprocè ut ipsius velocitas, erit tempus mediocre in Octantibus ad excessum temporis in Quadrantibus, ac defectum in Syzygiis, ab hac causa oriundum, ut 11023 ad 50 quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:5)
& propterea differentia inter momentum in loco quocunque & momentum mediocre in Octantibus, est ut differentia inter quadratum Sinus distantiae Lunae à Quadraturis & quadratum Sinus graduum 45, seu semissem quadrati Radii;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:7)
Et quod aequatio motus Nodorum in Octantibus sit 1 gr. 30'.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 18:4)
in capitibus circino dividentur circumitiones eorum tetrantibus et octantibus in partes octo, eaeque lineae ita conlocentur, ut plano posito tigno utriusque capitis ad libellam lineae inter se respondeant, et quam magna pars sit octava circinationis tigni, tam magna spatia decidantur in longitudinem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER DECIMUS, 6장5)
Compleatur parallelogrammum XYGT, & ex natura harum Hyperbolarum facile colligitur quod recta GT tangit Hyperbolam in G, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 91:1)
Patet hoc per Schol. Prop. IV. Lib. I. Cum autem perpendiculum Kd in SP demissum sit ipsius EL pars tertia, & ipsius SP seu ML in octantibus pars dimidia, vis EL in Octantibus, ubi maxima est, superabit vim ML in ratione 3 ad 2, adeoque erit ad vim illam, qua Luna tempore suo periodico circa Terram quiescentem revolvi posset, ut 100 ad 2/3 × 17872½ seu 11915, & tempore CS velocitatem generare deberet quae esset pars 100/11915 velocitatis Lunaris, tempore autem CPA velocitatem majorem generaret in ratione CA ad CS seu SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:19)
& incrementum temporis in locis singulis inter Octantes & Quadraturas, & decrementum ejus inter Octantes & Syzygias est in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:8)
Sin figura superior RPB Hyperbola est, describatur ad eandem diametrum principalem AB Hyperbola rectangula BD:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 6:2)
Halleius autem recentissimè deprehendit esse 38' in Octantibus versus oppositionem Solis, & 32' in Octantibus Solem versus.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:18)
Decrementum autem in locis inter Octantes & Syzygias, & incrementum in locis inter Octantes & Quadraturas, est quam proxime ad hoc decrementum, ut motus totus in locis illis ad motum totum in Syzygiis & differentia inter quadratum Sinus distantiae Lunae à Quadratura & semissem quadrati Radii ad semissem quadrati Radii, conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:13)
Unde si Nodi in Quadraturis versentur, & capiantur loca duo aequaliter ab Octante hinc inde distantia, & alia duo à Syzygiâ & Quadraturâ iisdem intervallis distantia, deque decrementis motuum in locis duabus inter Syzygiam & Octantem, subducantur incrementa motuum in locis reliquis duobus, quae sunt inter Octantem & Quadraturam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:14)
Ponatur indefinite, quod linea AGK Hyperbola sit, centro X Asymptotis MX, NX, ea lege descripta, ut constructo rectangulo XZDN cujus latus ZD secet Hyperbolam in G & Asymptoton ejus in V, fuerit VG reciproce ut ipsius ZX vel DN dignitas aliqua ND^n, cujus index est numerus n:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 81:2)
Asymptotis rectangulis CD, CH descripta Hyperbola quavis BbEe secante perpendicula AB, ab, DE, de, in B, b, E, e, exponantur velocitates initiales per perpendicula AB, DE, & tempora per lineas Aa, Dd. Est ergo ut Aa ad Dd ita (per Hypothesin) DE ad AB, & ita (ex natura Hyperbolae) CA ad CD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:1)

SEARCH

MENU NAVIGATION