라틴어 문장 검색

Nam & Linearum rectarum & Circulorum descriptiones in quibus Geometria fundatur, ad Mechanicam pertinent.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 서문 1:10)
sit, qua Planetae perpetuo retrahuntur a motibus rectilineis, et in lineis curvis revolvi coguntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 15:3)
Mutationem motus proportionalem esse vi motrici impressae, & fieri secundum lineam rectam qua vis illa imprimitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 5:1)
Accedet igitur corpus eodem tempore ad lineam BD sive vis N imprimatur, sive non, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:3)
adeo in fine illius temporis reperietur alicubi in linea illa BD.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:4)
Eodem argumento in fine temporis ejusdem reperietur alicubi in linea CD, & idcirco in utriusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:5)
lineae concursu D reperiri necesse est.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:6)
Quoniam nihil refert utrum filorum puncta K, L, D affixa sint vel non affixa ad planum rotae, pondera idem valebunt ac si suspenderentur a punctis K & L vel D & L. Ponderis autem A exponatur vis tota per lineam AD, & haec resolvetur in vires AC, CD, quarum AC trahendo radium OD directe a centro nihil valet ad movendam rotam;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:5)
& si vis ponderis p deorsum tendens, exponatur per lineam pH, resolvi potest haec in vires pN, HN.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:3)
Si filo pN perpendiculare esset planum aliquod pQ secans planum alterum pG in linea ad horizontem parallela;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:4)
utpote cum vis qua pondus p urget planum pQ sit ad vim, qua idem vel gravitate sua vel ictu mallei impellitur secundum lineam pH in plano, ut pN ad pH; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 19:3)
motus autem paralleli, propterea quod corpora agant in se invicem secundum lineam huic plano perpendicularem, retinendi sunt iidem post reflexionem atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:5)
Nam si puncta duo progrediantur uniformi cum motu in lineis rectis & distantia eorum dividatur in ratione data, punctum dividens vel quiescet vel progredietur uniformiter in linea recta, Hoc postea in Lemmate xxiii demonstratur in plano, & eadem ratione demonstrari potest in loco solido.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:1)
similiter & commune centrum horum duorum & tertii cujusvis vel quiescit vel progreditur uniformiter in linea recta, propterea quod ab eo dividitur distantia centri communis corporum duorum & centri corporis tertii in data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:4)
Eodem modo & commune centrum horum trium & quarti cujusvis vel quiescit vel progreditur uniformiter in linea recta, propterea quod ab eo dividitur distantia inter centrum commune trium & centrum quarti in data ratione, & sic in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:5)

SEARCH

MENU NAVIGATION