라틴어 문장 검색

At vero ubi duo altrinsecus parte altera longiores unum medium tetragonum claudunt, omnes ex his qui fiunt tetragoni a paribus producuntur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:8)
Hic ergo tetragonus cum parte altera longiore atque hic cum sequente tetragono eadem proportione iunguntur, differentiis vero non isdem.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:5)
Unum enim si respexeris, primus potestate tetragonus est. Sin vero unum tribus coacervaveris, quattuor tetragonus exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:7)
et rursus, quod ex duobus altrinsecus tetragonis et uno medio longilatero bis facto nascitur, ipse quoque tetragonus sit;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:12)
Tot autem necesse est unitates cybus habeat in latere, quot habuit primus ille tetragonus, ex quo ipse productus est. Nam quoniam quattuor tetragonus duos tantum numeros habet in latere, duos quoque habet octonarius cybus.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:12)
Illud quoque non oportet minore admiratione suspicere, quod secundum proprias naturas, ubi altrinsecus duo tetragoni stant et unus parte altera longior in medio ponitur, tetragonus, qui nascitur, ille semper ab inpari procreatur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:1)
Omnis autem cybus, qui ex tetragonorum superficie in profunditatem corporis crevit, per tetragoni scilicet latus multiplicatus, habebit quidem superficies vj, quarum singula planitudo tetragono illi priori aequalis est, latera vero xij, quorum unumquodque singulis his, quae superioris fuere tetragoni, aequum est, et, ut superius demonstravimus, tot unitatum est;
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:17)
angulos vero viij, quorum singulus sub tribus eiusmodi continetur, quales priores fuere tetragoni, unde cybus ipse productus est. Ergo ex naturaliter profuso numero qui in subiecta forma descripti sunt subiecti tetragoni nascuntur, et ex his tetragonis qui subnotati sunt cybi provehuntur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:18)
Et illam primam inmutabilem naturam unius eiusdemque substantiae vocant, hanc vero alterius, scilicet quod a prima illa inmutabili discedens prima sit altera, quod nimirum ad unitatem pertinet et ad dualitatem, qui numerus primus ab uno discedens alter factus est. Et quoniam cuncti secundum unitatis speciem naturamque inpares numeri formati sunt, quique ex his coacervatis tetragoni fiunt, duplici modo eiusdem substantiae participes esse dicuntur, quod vel ab aequalitate formantur tetragoni, vel coacervatis in unum numeris inparibus procreantur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:4)
Sin vero convertas et inter duos, primum et secundum, parte altera longiores secundum tetragonum ponas, qui in ordine quidem secundus est, sed actu et opere primus, ex duobus parte altera longioribus congregatis et bis multiplicato medio tetragono rursus tetragonus conficitur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:5)
Idem si a tetragona basi proficiscatur et ad unum verticem eius lineae dirigantur, erit pyramis quattuor triangulorum per latera, uno tantum tetragono in basi posito, super quam ipsa figura fundata est. Et si a pentagono surgant v lineae, quinque rursus pyramis triangulis continebitur, et si ab exagono, sex triangulis nihilominus;
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:1)
Omnis vero tetragonus, si ei proprium latus addatur, vel eodem rursus dematur, parte altera longior fit. Namque iiij tetragono si quis duo iungat vel duo detrahat, vj addendo perficiet et ij detrahendo.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:1)
Namque ex uno primo tetragono et binario primo parte altera longiore ternarius triangulus copulatur, et ex binario et quaternario, id est ex secundo tetragono senarius triangulus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:2)
Rursus si ponantur duo tetragoni ex superius descriptis, id est primus et secundus et in unum colligantur, et medius eorum parte altera longior his multiplicetur, tetragonus fit. Namque unus et iiij, si iungantur, v faciunt.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:2)
Illud autem apertissimum signum est, omnes tetragonos inparibus esse cognatos, quod in omni dispositione ab uno vel in duplicibus vel in triplicibus talis naturae ordo conseritur, ut nunquam, nisi secundum inparem locum tetragonus inveniatur.
(보이티우스, De Arithmetica, Liber secundus, Probatio quadratos eiusdem esse naturae 1:1)

SEARCH

MENU NAVIGATION