라틴어 문장 검색

Rursus figurae quadrilaterae BGDF, sub alijs quibusvis quatuor tangentibus contentae, diagonales (ut ita dicam) BD, GF biseca, & recta per puncta bisectionum acta transibit per centrum sectionis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 98:4)
Unde etiam vicissim Trapezium specie datum (si casus quidam impossibiles excipiantur) in data quavis sectione Conica inscribi potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 103:5)
Quoniam duarum sectionum Conicarum quatuor esse possunt intersectiones, non potest aliqua earum generaliter inveniri nisi per aequationem quatuor dimensionum, qua omnes simul inveniantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:11)
Unde etiam intersectiones Sectionum Conicarum & curvarum tertiae potestatis, eo quod sex esse possunt, simul prodeunt per aequationes sex dimensionum, & intersectiones duarum curvarum tertiae potestatis, quia novem esse possunt, simul prodeunt per aequationes dimensionum novem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:14)
Eadem de causa intersectiones binae rectarum & sectionum Conicarum prodeunt semper per aequationes duarum dimensionum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:16)
Si corpus non cadit perpendiculariter describet id sectionem aliquam Conicam cujus umbilicus inferior congruit cum centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:2)
Sit sectio illa Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est, super hujus axe majore AB describatur semicirculus ADB, & per corpus decidens transeat recta DPC perpendicularis ad axem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:4)
Positis jam inventis, dico quod corporis cadentis velocitas in loco quovis C est ad velocitatem corporis centro B intervallo BC circulum describentis, in dimidiata ratione quam CA, distantia corporis a Circuli vel Hyperbolae vertice ulteriore A, habet ad figurae semidiametrum principalem ½AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 9:1)
Junge SD, & areae ASD aequalem constitue Sectionem OSK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:2)
Tum centro S, intervallo aequante dimidium lateris recti, describatur circulus HKk, & ad corporis ascendentis vel descendentis loca duo quaevis G, C, erigantur perpendicula GI, CD occurrentia Conicae Sectioni vel circulo in I ac D. Dein junctis SI, SD, fiant segmentis SEIS, SEDS Sectores HSK, HSk aequales, & per Theorema XI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:6)
Si centro C & vertice principali V describatur sectio quaelibet Conica VRS, & a quovis ejus puncto R agatur Tangens RT occurrens axi infinite producto CV in puncto T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:2)
si conica sectio CVRS Hyperbola sit, descendet idem ad centrum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:8)
Vis autem qua corpus in circulo ad distantiam CV ea cum velocitate revolvi posset quam corpus in Ellipsi revolvens habet in V, est ad vim qua corpus in Ellipsi revolvens urgetur in Apside V, ut dimidium lateris recti Ellipseos ad circuli semidiametrum CV, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 8:10)
longitudo itineris curvilinei, quod punctum quodvis in rotae perimetro datum, ex quo globum tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui globum ex eo tempore inter eundem tetigit, ut summa diametrorum globi & rotae ad semidiametrum globi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 11:2)
longitudo itineris curvilinei quod punctum quodvis in Rotae Perimetro datum, ex quo globum tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui globum toto hoc tempore inter eundum tetigit, ut differentia diametrorum globi & rotae ad semidiametrum globi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 13:2)

SEARCH

MENU NAVIGATION