라틴어 문장 검색

longitudo itineris curvilinei quod punctum quodvis in Rotae Perimetro datum, ex quo globum tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui globum toto hoc tempore inter eundum tetigit, ut differentia diametrorum globi & rotae ad semidiametrum globi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 13:2)
longitudo illa est ut rectangulum BEC, si modo Globi detur semidiameter.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 20:3)
Nam in Cycloidis tangentem TW infinite productam cadat perpendiculum CX & jungatur CT.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:1)
Centro quovis G, intervallo GH Cycloidis arcum RS aequante, describe semicirculum HKMG semidiametro GK bisectum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:1)
arcus capti in dimidiata ratione semidiametrorum denotant aequalia tempora.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:10)
adeo in globis omnibus concentricis sunt ut numerus [sqrt]{AR ÷ AC}, id est, in ratione composita ex dimidiata ratione longitudinis fili AR directe & dimidiata ratione semidiametri globi AC inverse. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:8)
Nam si Rotae, qua Cyclois intra globum describitur, diameter constituatur aequalis semidiametro globi, Cyclois evadet linea recta per centrum globi transiens, & Oscillatio jam erit descensus & subsequens ascensus in hac recta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 38:3)
hac Tangente TX capiatur TY aequalis arcui TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 44:2)
De puncto Y educatur recta YZ Tangenti perpendicularis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 44:4)
adeo versus centrum intermedium C attrahitur, esset ad vim qua corpus p versus centrum s attrahitur in eadem illa ratione data, hae vires aequalibus temporibus attraherent semper corpora de tangentibus PR, pr ad arcus PQ, pq, per intervalla ipsis proportionalia RQ, rq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:9)
At quoniam vires illae non sunt ad invicem in ratione CP ad sp, sed (ob similitudinem & aequalitatem corporum S & s, P & p, & aequalitatem distantiarum SP, sp) sibi mutuo aequales, corpora aequalibus temporibus aequaliter trahentur de Tangentibus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:12)
A puncto P ducatur recta PH Sphaeram tangens in H, & ad axem PAB demissa Normali HI, bisecetur PI in L;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 78:1)
Simili computo, si vires particularum Sphaerae sunt reciproce in duplicata ratione distantiarum, colligetur quod attractio in I sit ad attractionem in P, ut distantia SP ad Sphaerae semidiametrum SA:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 102:4)
Sit autem Sphaeroidis centrum S & semidiameter maxima SC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:6)
Per corpus illud P agantur tum semidiameter SPA, tum rectae duae quaevis DE, FG Sphaeroidi hinc inde occurrentes in D & E, F & G:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:6)

SEARCH

MENU NAVIGATION