라틴어 문장 검색

& propterea si corpus illud attrahens vel quiescat, vel progrediatur uniformiter in directum, corpus attractum movebitur in Ellipsi centrum habente in attrahentis centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 17:3)
si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 21:4)
annulus autem iste est ut rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob proportionales PE & AE, Ee & cE) aequatur rectangulo PE × cE seu PE × Ff;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 26:3)
) componendo motum istum cum uniformi motu, secundum lineas eidem plano parallelas facto.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 53:5)
& primo si attractio vel impulsus ponatur uniformis, erit (ex demonstratis Galilaei) curva HI Parabola, cujus haec est proprietas, ut rectangulum sub dato latere recto & linea IM aequale sit HM quadrato;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:7)
& agitetur vi quae sit in singulis separatim uniformis, at in diversis diversa;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 6:3)
Proinde velocitas ante incidentiam est ad velocitatem post emergentiam, ut GH ad IK vel TH, id est, ut AH vel Id ad vH, hoc est (respectu radii TH vel IK) ut sinus emergentiae ad sinum incidentiae. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:7)
Et sit ea lineae incidentiae GH obliquitas ad planum primum Aa, ut sinus incidentiae sit ad radium circuli, cujus est sinus, in ea ratione quam habet idem sinus incidentiae ad sinum emergentiae ex plano Dd, in spatium DdeE:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:5)
uti in radiis ckzkc, biyib, ahxha incidentibus ad r, q, p, & inter k & z, i & y, h & x incurvatis, delineatum est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 16:12)
Nam si area illa per motum puncti D augeatur uniformiter ad modum temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, & partes rectae AC aequalibus temporibus descriptae decrescent in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:5)
ab uniformi gravitate urgetur, definire motum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 16:2)
Posito quod vis gravitatis in Medio aliquo similari uniformis sit, ac tendat perpendiculariter ad planum Horizontis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 25:1)
velocitas quacum corpus exire debet de loco D secundum rectam DP, ut in Medio uniformi resistente describat Curvam DraF, ea ipsa erit quacum exire debet de eodem loco D, secundum eandem rectam DR, ut in spatio non resistente describat Parabolam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:3)
Unde datur spatium in Medio resistente descriptum, capiendo illud ad spatium quod velocitate uniformi AB in Medio non resistente simul describi posset, ut est area Hyperbolica ABGD ad rectangulum AB × AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 6:2)
Datur etiam resistentia Medii, statuendo eam ipso motus initio aequalem esse vi uniformi centripetae, quae, in cadente corpore, tempore AC, in Medio non resistente, generare posset velocitatem AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 7:2)

SEARCH

MENU NAVIGATION