라틴어 문장 검색

manifestum est quod Fluidi cujuscunque GHI, quod undique premitur aequaliter, partes omnes se mutuo premunt aequaliter, & quiescunt inter se. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 10:3)
& subinde, partes fluidi, per Casum quintum, se mutuo prement aequaliter, & quiescent inter se. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 12:7)
Et similiter pressione quadrupla urgetur superficies quarta, quintupla quinta & sic deinceps.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:8)
eo ut progressio gravitatum specificarum a fundo A ad summitatem Fluidi continua reddatur, & in distantiis quibusvis continue proportionalibus SA, SD, SQ, densitates AH, DL, QT, semper existentes continue proportionales, manebunt etiamnum continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:28)
& propterea differentiis hisce proportionales areae thlx, xlnz aequales erunt inter se, & densitates St, Sx, Sz, id est AH, DL, FN, continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:31)
Ergo vires, quas singulae exercent in singulas secundum planum FGH in cubo majore, sunt ad vires quas singulae exercent in singulas secundum planum fgh in cubo minore ut ab ad AB, hoc est reciproce ut distantiae particularum ad invicem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 43:15)
id est vis compressionis ad vim compressionis ut densitas ad densitatem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 44:7)
Sed velocitates reciproce sunt ut tempora, atque adeo tempora directe & velocitates reciproce sunt ut quadrata temporum, & propterea quantitates materiae sunt ut vires motrices & quadrata temporum, id est ut pondera & quadrata temporum. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 3:8)
Isochronae sunt igitur oscillationes totae, & arcubus totis BA, BE proportionales sunt arcuum partes quaelibet BD, Bd vel BE, Be quae simul describuntur. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 14:20)
Ergo velocitates semper erunt ut arcus toti describendi, & propterea arcus illi simul describentur. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 18:7)
Sunt autem excessus illi ut vires efficientes AB & BB quam proxime, id est ut arcus A & B. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 21:10)
id est (si arcus duplicentur) ut Cycloidis totius arcus, seu dupla penduli longitudo, ad arcum Aa. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 26:4)
& quaeratur resistentia corporis in loco quovis D. Secetur recta infinita OQ in punctis O, C, P, Q ea lege ut (si erigantur perpendicula OK, CT, PI, QE, centroque O & Asymptotis OK, OQ describatur Hyperbola TIGE secans perpendicula CT, PI, QE in T, I & E, & per punctum I agatur KF occurrens Asymptoto OK in K, & perpendiculis CT & QE in L & F) fuerit area Hyperbolica PIEQ ad aream Hyperbolicam PITC ut arcus BC descensu corporis descriptus ad arcum Ca ascensu descriptum, & area IEF ad aream ILT ut OQ ad OC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:3)
Igitur area {OR ÷ OQ} IEF - IGH aequalis est areae Z, per quam resistentia exponitur, & propterea est ad aream PINM per quam gravitas exponitur, ut resistentia ad gravitatem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 34:5)
Ergo rectangulum Aa × ½aB seu AaO, cum sit aequale areae BRSa, erit etiam aequale areae BKTa quamproxime. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:25)

SEARCH

MENU NAVIGATION