라틴어 문장 검색

Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
unde formae solidae tria intervalla dicuntur habere.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:6)
Recte igitur et planae figurae duobus intervallis et solidae tribus contineri dicuntur.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:8)
ter enim tres ter xxvij restituunt.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:23)
Tres enim ter bis xviij concludunt.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:27)
Namque in hac dispositione iij iiij vj tres ad quattuor comparati sesquitertiam habitudinem, sex vero ad quattuor, sesqualteram reddunt.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:4)
In hac enim dispositione armonica, quae est ij iij vj ternarius binarium tertia sui parte vincit, idem ternarius a senario tota sui quantitate superatur, id est tribus, idemque ipse ternarius medietate minoris vincit minorem, id est uno, et medietate maioris a maiore termino vincitur, id est tribus.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:15)
In hac enim dispositione, quae est iiij vj viiij tertia sui parte medius senarius quaternarium superat, id est duobus, et tertia sui parte rursus novenarius senarium vincit, id est tribus.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:17)
Quod si se ipsae extremitates multiplicent et fiant tres sexies, xviij conficiunt, quod est prioris summae dimidium.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:21)
In qua tribus terminis positis, quemadmodum est maximus terminus ad parvissimum, sic differentia minorum ad differentiam maximorum, ut sunt iij v vj. Sex ad ternarium duplus est, et sunt minores termini v et iij, maximi vero huius dispositionis vj et v. Differentia vero minorum, quinarii scilicet et ternarii, ij sunt, maiorum, quinarii et senarii, j. Qui ij ad j comparati duplum faciunt.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:7)
Sexies enim quinque xxx sunt, quinquies vero tres xv.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:11)
Est autem quinta medietas, quotiens in tribus terminis quemadmodum est medius terminus ad minorem terminum, ita eorum differentia ad differentiam medii atque maioris.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:2)
Sexta vero medietas est, quando tribus terminis constitutis quemadmodum est maior terminus ad medium, sic minorum terminorum differentia ad differentiam maximorum.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:1)
Et hae quidem sunt sex medietates, quarum tres usque a Pythagora ad Platonem Aristotelemque manserunt.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:1)
Post vero, qui insecuti sunt, has tres alias, de quibus supra disseruimus, suis commentariis addiderunt.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:2)

SEARCH

MENU NAVIGATION