라틴어 문장 검색

adeo ut penduli in aere oscillantis resistentia illa quae velocitatis quadrato proportionalis est, quaeque sola in corporibus velocioribus consideranda venit, sit ad resistentiam ejusdem penduli totius, eadem cum velocitate in aqua oscillantis, ut 800 vel 900 ad 1 circiter, hoc est ut densitas aquae ad densitatem aeris quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:7)
In hoc calculo sumi quoque deberet pars illa resistentiae penduli in aqua, quae esset ut quadratum velocitatis, sed (quod mirum forte videatur) resistentia in aqua augebatur in ratione velocitatis plusquam duplicata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 99:1)
Gravitas enim vaporum in Solem non magis efficiet ut caudae postea decidant à capitibus Solem versus, quam gravitas capitum efficere possit ut haec decidant à caudis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 50:14)
hoc est, si gravitatis vis uniformis exponatur per longitudinem datam AT, vis TZ, qua Oscillationes evadent Isochronae, erit ad vim gravitatis AT, ut arcus TR ipsi TY aequalis ad arcus illius sinum TN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 46:6)
Gravitas igitur sub aequatore minor erit in materiam illam redundantem quàm pro computo superiore, & propterea Terra ibi propter defectum gravitatis paulò altius ascendet quàm in praecedentibus definitum est.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:19)
Designet jam AV + CV^2 resistentiam Globi in aere cum velocitate V moventis, & cum velocitas maxima, in Casu columnae, quartae sit ad velocitatem maximam in casu columnae primae ut 1 ad 8, & resistentia in Casu columnae quartae ad resistentiam in Casu columnae primae in ratione arcuum differentiae in his casibus, ad numeros oscillationum applicatae, id est ut 2/535 ad 16 ÷ 85½ seu ut 85½ ad 4280:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:1)
ideoque (cum distantiae particularum systematis unius sint ad distantias correspondentes particularum alterius, ut diameter particulae vel partis in systemate priore ad diametrum particulae vel partis correspondentis in altero, & quantitates materiae sint ut densitates partium & cubi diametrorum) resistentiae sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium Systematum. Q. E. D. Posterioris generis resistentiae sunt ut reflexionum correspondentium numeri & vires conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:4)
ut tentarem an resistentia, quam in motis corporibus experimur, tota sit in eorum externa superficie, an vero partes etiam internae in superficiebus propriis resistentiam notabilem sentiant, excogitavi experimentum tale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:3)
hoc est gravitati solidi cujus ultima ratio ad Cylindrum praefinitum, (si modo Orbium augeatur numerus & minuatur crassitudo in infinitum, sic ut actio gravitatis a superficie infima ad supremam continua reddatur) fiet ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:11)
In conjunctione autem Jovis & Saturni gravitates acceleratrices Solis in Saturnum, Jovis in Saturnum & Jovis in Solem sunt fere ut 16, 81 & {16 × 81 × 2360} ÷ 25 seu 122342, adeoque differentia gravitatum Solis in Saturnum & Jovis in Saturnum est ad gravitatem Jovis in Solem ut 65 ad 122342 seu 1 ad 1867.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 11:6)
si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 21:4)
Bisecetur AB in C, & punctum C repraesentabit infimum Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad longitudinem Penduli quam habet vis in D ad vim gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:2)
Proinde cum resistentiae similium & aequivelocium corporum, in Medio cujus partes distantes se mutuo non fugiunt, sint ut quadrata diametrorum, sunt etiam aequivelocium & celerrime moventium corporum resistentiae in Fluido Elastico ut quadrata diametrorum quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 12:2)
erit excessus gravitatis Lutetiae, in Insula Goree & Cayennae, ad gravitatem sub aequatore ut {3 × 11305} ÷ 20000, {3 × 1211} ÷ 20000 & {3 × 152} ÷ 20000 ad 689, seu 33915, 3633, & 456 ad 13780000, & propterea gravitates totae in his locis erunt ad invicem ut 13813915, 13783633, 13780456, & 13780000.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:12)
Debebit tamen resistentia tam in aere quam in aqua, si velocitas per gradus in infinitum augeatur, augeri tandem in ratione paulo plusquam duplicata, propterea quod in experimentis hic descriptis resistentia minor est quam pro ratione de corporibus velocissimis in Libri hujus Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 101:3)

SEARCH

MENU NAVIGATION