라틴어 문장 검색

X vero ad xvj et xvj ad xxij et xxij ad xxviij et xxviij ad xxxiiij si componas, tertio se triangulo vincent, id est senario.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:4)
Si huic igitur triangulo per tres angulos erigantur lineae et ad unum punctum convertantur, quod est d, ita ut d punctum non sit in plano, sed pendens, illae scilicet lineae ad ipsum erectae verticem et quodammodo cacumen d facient et erit basis a b c unum triangulum, per latera vero tria triangula, id est unum triangulum a d b, aliud vero b d c, tertium c d a.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:6)
prima pyramis de triangulo, secunda pyramis de tetragono, tertia pyramis de pentagono, quarta pyramis de exagono, quinta pyramis de eptagono, idemque in ceteris constat numeris.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:2)
Nam quoniam lineares numeros esse diximus, qui ab uno profecti in infinitum currerent, ut sunt j ij iij iiij v vj vij viij viiij x, his autem ordinatim compositis et ad se invicem cum distantia iunctis superficies nascebantur, ut, si unum et duo iungeres, primus triangulus nasceretur, id est tres, et cum his adiungeremus tertium, id est ternarium, senarius triangulus rursus occurreret, et post hos tetragoni uno intermisso, pentagoni vero duobus, exagoni tribus, eptagoni relictis quattuor nascebantur:
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:3)
At vero si his tertium, senarium, iunxero denaria pyramidis procreabitur altitudo.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:11)
Ter enim tres si tertio duxeris, xxvij cybi figura producitur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:9)
Sin vero inter secundum tertiumque tetragonum secundum parte altera longiorem ponas, sesqualterae comparationis ad utrosque forma componitur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 21:3)
Et rursus ternarius, qui novenarii pars tertia est, duodenarii quarta est;
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:6)
Si vero tertium locum respexeris, iiij et viiij notabis, quorum hic a duobus proficiscitur, illum ternarius creat;
(보이티우스, De Arithmetica, Liber secundus, Probatio quadratos eiusdem esse naturae 4:2)
Iuncti autem tres, qui sequuntur, septenarius novenariusque et xj cybum facient, qui xxvij numero continetur, qui est tertius.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 3:3)
At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
unde duo tantum in his intervalla sunt constituta, a primo scilicet ad medium et a medio ad tertium.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:4)
Si vero fuerint cybi, duas tantum habebunt medietates, ubi tertia inveniri non poterit secundum geometricam scilicet proportionem;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:5)
Sed nunc ad tertiam medietatem redeundum est.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:35)
Quare in his neque eadem proportio terminorum est, neque sunt eaedem differentiae, est autem quemadmodum maximus terminus ad parvissimum terminum, sic differentia maximi et medii ad differentiam medii atque postremi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 1:3)

SEARCH

MENU NAVIGATION