라틴어 문장 검색

215. 213 263 18 Sempronius Tuditanus, M. cos.
(마르쿠스 툴리우스 키케로, 투스쿨라눔의 대화, INDICES, I. NOMINA PROPRIA172)
Si corpus dato tempore, vi sola M, ferretur ab A ad B, & vi sola N, ab A ad C, compleatur parallelogrammum ABDC, & vi utraq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:1)
Idem secunda temporis parte, si nil impediret, recta pergeret ad c, (per Leg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:2)
Simili argumento si vis centripeta successive agat in C, D, E, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:10)
A circuli centro C agatur semidiameter CA parallelas istas perpendiculariter secans in M & N, & jungantur CP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 54:1)
Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum contactus, PO ordinatim applicata ad diametrum principalem, PM tangens diametro principali occurrens in M, & SN linea perpendicularis ab umbilico in tangentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:1)
Junge Cd secantem PQ in r, & ipsi PQ parallelam age DM secantem Cd in M & AB in N. Jam ob similia triangula BTt, DBN, est Bt seu PQ ad Tt ut DN ad NB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 6:4)
Producatur iL ad M, ut sit LM ad iL ut GH ad HI, & agatur tum MQ ipsi LB parallela rectaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 122:4)
Bisecetur OG in C, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:6)
Apsis illa singulis corporis revolutionibus confecerit in Consequentia gradus tres, erit m ad n ut 363gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:30)
Centro item C & intervallo quovis describatur circulus nom secans rectam CP in n, Rotae perimetrum Bp in o & viam curvilineam AP in m, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:9)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)
parallelam age LM occurrentem QS in M, & attractio QL resolvetur (per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:7)
Ad planum emergentiae Bb erigatur perpendiculum IM, occurrens tum lineae incidentiae GH productae in M, tum plano incidentiae Aa in R;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:5)
produc tum AB ad G ut sit BG ad CE ut M - N ad N, tum AD ad H ut sit AH aequalis AG, tum etiam DF ad K ut sit DK ad DH ut N ad M. Junge KB, & centro D intervallo DH describe circulum occurrentem KB productae in L, ipsiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 26:4)

SEARCH

MENU NAVIGATION