라틴어 문장 검색

Si Vis centripeta, ad singulas Sphaerae particulas tendens, decrescit in quadruplicata ratione distantiae a particulis, scribe PE^4 ÷ 2AS^3 pro V, dein [sqrt]2PS × LD pro PE, & fiet DN ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 91:2)
ad seriem convergentem, & hic pro Q, R & S scribendo terminos seriei ipsis respondentes;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:15)
At si corpus idem de loco A secundum lineam ipsi AK perpendicularem egrederetur, sumenda esset OB seu a ad contrarias partes centri O, & propterea signum ejus mutandum esset, & scribendum -a pro +a.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 73:1)
si pro area DTV, qua momentum temporis sibimet ipsi semper aequale exponitur, scribatur determinatum quodvis rectangulum, puta BD × m, erit area DPQ, id est, ½BD × PQ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 34:2)
Et universaliter, si D ponatur pro distantia, & E pro densitate Fluidi compressi, & vires centrifugae sint reciproce ut distantiae dignitas quaelibet Dn, cujus index est numerus n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:3)
Eadem erit lex & ratio resistentiae pro velocitate, quae est differentiae illius pro longitudine arcus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 54:4)
Ideoque si, pendulo inaequales arcus successive describente, inveniri potest ratio incrementi ac decrementi resistentiae hujus pro longitudine arcus descripti, habebitur etiam ratio incrementi ac decrementi resistentiae pro velocitate majore vel minore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 55:2)
& augendo velocitates corporum D & F in ratione quacunque, ac diminuendo vires particularum Medii B in eadem ratione duplicata, accedet Medium B ad formam & conditionem Medii C pro lubitu, & idcirco resistentiae corporum aequalium & aequivelocium E & G in his Mediis, perpetuo accedent ad aequalitatem, ita ut earum differentia evadat tandem minor quam data quaevis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:11)
Nam si aqua ex partibus crassioribus constet, haec tardius effluet quam pro ratione superius assignata, praesertim si foramen angustum sit per quod effluit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 51:2)
scribamus in Casu secundo quarto & sexto numeros 1, 4, & 16 pro V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 79:3)
si pro A, B, & C scribantur numeri inventi, fiet resistentia Globi ad ejus pondus, ut 0,0001334V + 0,000623V^{3/2} + 0,00227235V^2 ad longitudinem Penduli inter centrum suspensionis & Regulam, id est ad 121 digitos.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:14)
Nam tempora oscillationum pyxidis plenae minora sunt quam tempora oscillationum pyxidis vacuae, & propterea resistentia pyxidis plenae in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:8)
Et quoniam motus undarum ab A versus PQ fit per continuum defluxum jugorum in valles proximos, adeoque celerior non est quam pro celeritate descensus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 9:11)
Verum tamen nisi contractiones & dilatationes sint valde intensae, non errabit sensibiliter, ideoque pro Physice accurata haberi potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 36:5)
Et propterea annulorum series quaelibet à globo in infinitum rectà pergens movebitur pro lege casus primi, nisi quatenus impeditur ab attritu annulorum ad latera.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:7)

SEARCH

MENU NAVIGATION