라틴어 문장 검색

j ij iij iiij v vj vij viij viiij x. In hac enim naturalis numeri dispositione, si quis continuatim differentias terminorum curet aspicere, secundum arithmeticam medietatem aequa terminorum inter se discrepantia est;
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:3)
Videsne ut, cum superius in naturalis numeri dispositione se termini singulis praeterirent, praetermissis duobus et iiij unus ad iij et iiij ad quinarium comparati binarium solum in differentia retinuerint.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 2:1)
Illud quoque subtilius, quod multi huius disciplinae periti nisi Nicomachus nunquam antea perspexerunt, quod in omni dispositione vel continua vel disiuncta, quod continetur sub duabus extremitatibus minus est eo numero, qui ex medietate conficitur, tantum, quantum possunt duae sub se differentiae continere, quae inter ipsos sunt terminos constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:3)
Ponamus enim tres terminos huiusmodi iij v vij. Si igitur tres septies augeantur, in xxj numerum cadunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:4)
Quod si medium terminum, id est v, in semet ipsum multiplicaveris, quinquies quinque faciunt xxv Et hic numerus ab eo, quem extremitates colligunt, quaternario maior est, quem scilicet differentiae conficiunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:5)
Recte igitur dictum est, in hac huiusmodi dispositione, quod continetur sub extremitatibus, minus esse illo numero, qui fit ex medietate, tantum, quantum differentiae in se multiplicatae restituunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:8)
Harum vero medietatum, id est arithmeticae atque armonicae, geometrica proportionalitas media esse notata est, quae vel in maioribus vel in minoribus terminis aequas numerorum qualitates in proportionalitate custodit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:6)
Sin vero quadruplices sint, triplicato minore termino maior terminus a minore distabit, et, si quincupla, quadruplicato, et, si sescupla quincuplicato, et una minus multiplicatione, quam est ipsa minorum ad maiores comparatio terminorum, minorem numerus maior exsuperat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:8)
Ternarius igitur numerus binarium tertia sua parte praecedit, id est uno, et a quaternario tertia sua parte praeceditur, id est uno. At vero ternarius non eadem parte minoris minorem vincit vel maioris a maiore superatur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:11)
Rursus si extremitates in unum redigantur et a medietate octonario multiplicentur, duplus erit ab eo numero, quem solae extremitates multiplicatae perfecerint.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 1:8)
ita quoque datis duobus numeris nunc quidem arithmeticam nunc vero geometricam nunc autem armonicam medietatem experiamur inserere, ut rectum propriumque medietatis nomen sit, quod manentibus extremitatibus huc atque illuc ferri permutarique videatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:2)
et tanto minor est numerus, qui fit ex multiplicatis extremitatibus, ab eo, qui fit ex multiplicata medietate, quantum eorum differentiae multiplicatae restituunt;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:12)
Si vero armonicam medietatem coniungere velim, xvj mihi numerus inter extremitates utrasque ponendus est, ut sit hoc modo:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:1)
et si in unum extremitates redigantur et medietatis quantitate concrescant, duplus inde conficitur numerus ab eo, qui ex solis multiplicatis extremitatibus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:7)
Nam si sint v xxv xlv eadem sese numerorum quantitate termini transgredientur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 4:2)

SEARCH

MENU NAVIGATION