라틴어 문장 검색

& si centro C radio CP describi intelligatur sphaera Pape;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:2)
& Terrae totius exterioris PapAPepE, quae Sphaerâ modò descriptâ altior est, particulae singulae conantur recedere hinc inde à plano QR, sitque conatus particulae cujusque ut ejusdem distantia à plano:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:4)
Descripsimus jam Systema Solis, Terrae & Planetarum:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 9:1)
Oritur igitur hic angulus praecipuè ex motu Terrae, & idcirco pro parallaxi Cometae meritò [Pictura] habendus est, neglecto videlicet ejus incremento vel decremento nonnullo, quod à Cometae motu inaequabili in orbe proprio oriri possit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 13:19)
Spatii autem tantillo intervallo circa Solem descripti pars longè major sita est à latere Terrae quod Solem respicit;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 19:7)
Cometas in Sectionibus conicis umbilicos in centro Solis habentibus moveri, & radiis ad solem ductis areas temporibus proportionales describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 22:1)
Ideoque Cometae maxima ex parte supra Planetas versantes, & eo nomine orbes axibus majoribus describentes, tardius revolventur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 24:3)
Ponamus radium orbis magni, seu Ellipseos in qua Terra revolvitur semidiametrum transversam, esse partium 100000000, & Terra motu suo diurno mediocri describet partes 1720212, & motu horario partes 71675½.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 26:3)
Ideoque Cometa in eadem Telluris à Sole distantia mediocri, ea cum velocitate quae sit ad velocitatem Telluris ut [sqrt]2 ad 1, describet motu suo diurno partes 2432747, & motu horario partes 101364½.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 26:4)
area quam Radio ad punctum S ducto describeret, aequalis esset areae Parabolicae ASC[mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:2)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)
Quare AC est ad longitudinem in tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:4)
Cometa igitur ea cum velocitate, quam habet in altitudine S[mu] + 2/3I[mu], eodem tempore describeret chordam AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 52:2)
Et propterea eo cum pondere quod habet in Solem in altitudine SP, cadendo de altitudine illa in Solem, describeret eodem tempore (per Scholium Prop. IV. Lib. I.) spatium aequale quadrato semissis chordae illius applicato ad quadruplum altitudinis SP, id est spatium AIq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:2)
Cometa pondere quod habet in altitudine SN eodem tempore, in Solem cadendo, describet spatium AIq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:5)

SEARCH

MENU NAVIGATION