라틴어 문장 검색

Namque in hac proportione, quae est iij iiij vj, maior terminus, id est senarius, ad parvissimum terminum, id est ternarium, duplus est et differentia maximi et medii, id est senarii et quaternarii, duo scilicet, ad differentiam medii et ultimi, id est quaternarii atque ternarii, quae est unitas, dupla perspicitur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 1:4)
Senarii enim medietas ternarius est. In geometrica vero medietate neque eisdem suis partibus medius vel vincit minorem vel a maiore vincitur, neque eadem parte vel minoris minorem superat vel maioris a maiore relinquitur, sed qua parte sua medius terminus minorem superat, eadem parte sua maior terminus medium vincit, quod est ut medietas atque extremitas aequalibus medietatem et extremitatem reliquam suis partibus supervadant.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:16)
DFGE ÷ DE ut {2I × V + ½I} ÷ DE, id est, si primae quantitatum nascentium rationes sumantur, longitudo DF ut quantitas 2I × V ÷ DE, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 42:4)
ut & ratio quantitatis cujusvis, quae ex una distantia & quantitatibus datis utcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 23:2)
derivatur, ad quantitatem aliam, quae ex altera distantia & quantitatibus totidem datis datamq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 23:3)
Et si quantitas GD ipsi 1 ÷ GD reciproce proportionalis quantitate data CG augeatur, summa CD, tempore ABED uniformiter crescente, crescet in progressione Geometrica. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 5:13)
Et cum corpora similia, aequalia & aequivelocia, in Mediis ejusdem densitatis, quorum particulae se mutuo non fugiunt, sive particulae illae sint plures & minores, sive pauciores & majores, in aequalem materiae quantitatem temporibus aequalibus inpingant, eique aequalem motus quantitatem imprimant, & vicissim (per motus Legem tertiam) aequalem ab eadem reactionem patiantur, hoc est, aequaliter resistantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 13:2)
Quarta vero, quae in ordine decima est, consideratur in tribus terminis, cum tali proportione medius terminus ad parvissimum comparatur, quali extremorum differentia contra maiorum terminorum differentiam proportione coniungitur, ut sunt iij v viij.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:12)
Oritur enim quantitas motus ex celeritate ducta in quantitatem Materiae, & vis motrix ex vi acceleratrice ducta in quantitatem ejusdem materiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 26:2)
Semper enim se denominatio fuerit par, quantitas partis erit inpar, si denominatio inpar, quantitas par:
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:7)
Arithmeticam medietatem vocamus, quotiens vel tribus vel quotlibet terminis positis aequalis atque eadem differentia inter omnes dispositos terminos invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:1)
Vel si eam proportionem, quam inter se dati termini custodiunt, dividas et id quod relinquitur medium terminum ponas.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:14)
Quantitas motus est mensura ejusdem orta ex Velocitate et quantitate Materiae conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 5:1)
Et propterea quantitas aquae cujus descensum Globus impedit, aequalis est quantitati aquae, quae eodem tempore per foramen circulare in fundo vasis, basi Cylindri illius aequale, descendere posset, & cujus descensus per fundi partem quamvis circularem basi illi aequalem impeditur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 56:18)
Si autem inpares terminos ponamus, id est summas -- idem enim terminos quod summas nomino -- secundum inparis naturam potest una medietas inveniri atque ipsa una sibi est responsura.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 14:1)

SEARCH

MENU NAVIGATION