라틴어 문장 검색

in 2AS, fiet 4/3GH × AS (= 1/6AO × PO + ½AS × PO = {AO + 3AS} ÷ 6 × PO = {4AO - 3SO} ÷ 6 × PO = areae APO - SPO) = areae APS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:28)
Sed GH erat 3M, & inde 4/3HG × AS est 4AS × M. Ergo area APS aequalis est 4AS × M. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:29)
Hinc GH est ad AS, ut tempus quo corpus descripsit arcum AP ad tempus quo corpus descripsit arcum inter verticem A & perpendiculum ad axem ab umbilico S erectum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 5:2)
ad rectangulum AS × OD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:5)
ad AS × OD × CF, hoc est, ob aequalia AK × AO × ODq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:10)
ut AO × OD ad AS × CF.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:11)
Proinde Ap × ½AS est ad Gf × ½GC ut AO × OD × AS ad AS × CF × GC, seu AO × OD ad CGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:12)
Si Ellipseos latus transversum multo majus sit quam latus rectum, & motus corporis prope verticem Ellipseos desideretur, (qui casus in Theoria Cometarum incidit,) educere licet e puncto G rectam GI axi AB perpendicularem, & in ea ratione ad GK quam habet area AVPS ad rectangulum AK × AS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 24:1)
Jungantur SD, SK, Sk & ducatur Dd axi AS occurrens in T, & ad eam demittatur perpendiculum SY.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 20:3)
Jam si figura DES Circulus est vel Hyperbola, bisecetur ejus transversa diameter AS in O, & erit SO dimidium Lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:2)
Super diametro AS (distantia corporis a centro sub initio) describe semicirculum ADS, ut & huic aequalem semicirculum OKH circa centrum S. De corporis loco quovis C erige ordinatim applicatam CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:1)
Cadat corpus de loco quovis A secundum rectam AS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 35:1)
& centro virium S, intervallo AS, describatur circuli quadrans AE, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 35:2)
Et longitudo semiperimetri Cycloidis AS aequabitur lineae rectae, quae est ad Rotae diametrum BV ut 2CE ad CB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 19:2)
id est (ob continue proportionales PS, AS, SI) ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 86:1)

SEARCH

MENU NAVIGATION