- 문장 검색

라틴어 문장 검색

Similiter in Trochlea seu Polyspasto vis manus funem directe trahentis, quae sit ad pondus vel directe vel oblique ascendens ut velocitas ascensus perpendicularis ad velocitatem manus funem trahentis, sustinebit pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:7)
Corporis de loco dato sursum vel deorsum projecti definire tempora ascensus vel descensus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 29:1)
AEquales igitur sunt corporum velocitates in E & K & eodem argumento semper reperientur aequales in subsequentibus aequalibus distantiis. Q. E. D. Sed & eodem argumento corpora aequivelocia & aequaliter a centro distantia, in ascensu ad aequales distantias aequaliter retardabuntur. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:21)
& propterea corpus de Apside summa discedens & subinde perpetuo descendens, perveniet ad Apsidem imam ubi complevit revolutionem integram, dein perpetuo ascensu complendo aliam revolutionem integram, redibit ad Apsidem summam:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:32)
Ut si corpus revolutionibus 8 vel 4 vel 2 vel 1½ de Apside summa ad Apsidem summam alterno descensu & ascensu redierit, hoc est, si fuerit m ad n ut 8 vel 4 vel 2 vel 1½ ad 1, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:22)
Nam Scriptores qui motum gravium tractant, considerare solent ascensus & descensus ponderum, tam obliquos in planis quibuscunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 24:3)
His affines sunt ascensus ac descensus corporum in superficiebus curvis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 9:1)
Nam si Rotae, qua Cyclois intra globum describitur, diameter constituatur aequalis semidiametro globi, Cyclois evadet linea recta per centrum globi transiens, & Oscillatio jam erit descensus & subsequens ascensus in hac recta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 38:3)
de Sphaera & Cylindro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:3)
Unde si solidum Cylindrus sit, parallelogrammo ADEB circa axem AB revoluto descriptus, & vires centripetae in singula ejus puncta tendentes sint reciproce ut quadrata distantiarum a punctis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:2)
erit attractio corpusculi P in hunc Cylindrum ut BA - PE + PD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:3)
E corpore dato formanda est Sphaera vel Cylindrus aliave figura regularis, cujus lex attractionis, cuivis decrementi rationi congruens (per Prop. LXXX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 43:1)
Corpore ascendente, exponatur gravitas per datum quodvis rectangulum BC, & resistentia Medii initio ascensus per rectangulum BD sumptum ad contrarias partes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 17:1)
& corpus ascendendo, tempore DGgd, describet spatium EGge, tempore DGBA spatium ascensus totius EGB, tempore AB2G2D spatium descensus BF2G, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 17:3)
Corpus igitur inter descendendum, tempore quovis ABrL, describit spatium Blr, & tempore LrtN spatium rlnt. Q. E. D. Et similis est demonstratio motus expositi in ascensu. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:31)

SEARCH

MENU NAVIGATION