라틴어 문장 검색

Dein pendulo ad locum primo notatum distracto ac dimisso, numerabam oscillationes quasi septuaginta & septem, donec pyxis ad locum secundo notatum rediret, totidemque subinde donec pyxis ad locum tertio notatum rediret, atque rursus totidem donec pyxis reditu suo attingeret locum quartum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:17)
Nam si aequales essent ambarum resistentiae, pyxis plena ob vim suam insitam septuagies & octies majorem vi insita pyxidis vacui, motum suum oscillatorium tanto diutius conservare deberet, atque adeo completis semper oscillationibus 78 ad loca illa notata redire.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:19)
Rediit autem ad eadem completis oscillationibus 77.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:20)
Causam quaerendo, reperi quod uncus infirmus cedebat ponderi pyxidis, & ejus oscillationibus obsequendo in partes omnes flectebatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 107:6)
construatur autem Pendulum cujus longitudo inter punctum suspensionis & centrum oscillationis aequetur semissi longitudinis aquae in Canali:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 18:2)
Constituatur Pendulum cujus longitudo inter punctum suspensionis & centrum oscillationis aequetur latitudini Undarum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 29:1)
& quo tempore pendulum illud oscillationes singulas peragit, eodem Undae progrediendo latitudinem suam propemodum conficient.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 29:2)
Igitur inter transitum Undarum singularum tempus erit oscillationum duarum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:11)
Constitui autem intelligatur Pendulum, cujus longitudo inter punctum suspensionis & centrum oscillationis sit A:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 50:2)
& quo tempore pendulum illud oscillationem integram ex itu & reditu compositam peragit, eodem pulsus eundo conficiet spatium circumferentiae circuli radio A descripti aequale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 50:3)
Quare cum oscillationum tempora sint in dimidiata ratione longitudinis pendulorum, & longitudo penduli aequetur dimidio arcui Cycloidis totius;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:4)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Quare cum tempora, quibus aequalia corpora per aequalia spatia impelluntur, sint reciproce in dimidiata ratione virium, erit tempus vibrationis unius urgente vi illa Elastica, ad tempus vibrationis urgente vi ponderis, in dimidiata ratione V × EG ad HK × A, atque adeo ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione V × EG ad HK × A & PO ad A conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:8)
Ergo tempus quo pulsus percurrit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositae, ut BC ad Z × A ÷ PO, id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:17)
ideoque tempore talis oscillationis pulsus percurret longitudinem huic circumferentiae aequalem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:18)

SEARCH

MENU NAVIGATION