라틴어 문장 검색

Cum autem fluida premendo corpora inclusa non mutent eorum Figuras externas, patet insuper, per Corollaria Prop. XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 26:2)
Et par est ratio cujuscunque corporum Systematis fluido comprimente circundati.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 26:6)
Systematis partes omnes iisdem agitabuntur motibus, ac si in vacuo constituerentur, ac solam retinerent gravitatem suam comparativam, nisi quatenus fluidum vel motibus earum nonnihil resistat, vel ad easdem compressione conglutinandas requiratur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 26:7)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a vi centripeta distantiis suis a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 28:1)
dico quod si distantiae illae sumantur continue proportionales, densitates fluidi in iisdem distantiis erunt etiam continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 28:2)
Designet ATV fundum Sphaericum cui fluidum incumbit, S centrum, SA, SB, SC, SD, SE, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:1)
eo ut progressio gravitatum specificarum a fundo A ad summitatem Fluidi continua reddatur, & in distantiis quibusvis continue proportionalibus SA, SD, SQ, densitates AH, DL, QT, semper existentes continue proportionales, manebunt etiamnum continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:28)
Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, & t.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:2)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a gravitate quadratis distantiarum suarum a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 34:1)
dico quod si distantiae sumantur in progressione Musica, densitates Fluidi in his distantiis erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 34:2)
quae sint ut Fluidi densitates in locis A, B, C, D, E, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:3)
Hinc si dentur Fluidi densitates duae quaevis, puta AH & CK, dabitur area thkw harum differentiae tw respondens;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 37:2)
Simili argumentatione probari potest, quod si gravitas particularum Fluidi diminuatur in triplicata ratione distantiarum a centro;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:1)
Rursus si gravitas particularum Fluidi in omnibus distantiis eadem sit, & distantiae sint in progressione Arithmetica, densitates erunt in progressione Geometrica, uti Vir Cl.\ Edmundus Halleius invenit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:22)
Particulae viribus quae sunt reciproce proportionales distantiis centrorum suorum se mutuo fugientes componunt Fluidum Elasticum, cujus densitas est compressioni proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 41:1)

SEARCH

MENU NAVIGATION