라틴어 문장 검색

Unde juxta Superficiem Terrae, ubi gravitas acceleratrix seu vis gravitans in corporibus universis eadem est, gravitas motrix seu pondus est ut corpus:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 26:4)
Partem dico spatii, non situm corporis vel superficiem ambientem.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 32:3)
Superficies autem ob dissimilitudinem figurarum ut plurimum inaequales sunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 32:5)
superficies aquae sub initio plana erit, quemadmodum ante motum vasis, at postquam, vi in aquam paulatim impressa, effecit vas, ut haec quoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 41:6)
Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 2:1)
similiter & commune centrum horum duorum & tertii cujusvis vel quiescit vel progreditur uniformiter in linea recta, propterea quod ab eo dividitur distantia centri communis corporum duorum & centri corporis tertii in data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:4)
Eodem modo & commune centrum horum trium & quarti cujusvis vel quiescit vel progreditur uniformiter in linea recta, propterea quod ab eo dividitur distantia inter centrum commune trium & centrum quarti in data ratione, & sic in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:5)
Corporum dato spatio inclusorum ijdem sunt motus inter se, sive spatium illud quiescat, sive moveatur idem uniformiter in directum absq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 30:1)
Corpus omne quod, cum movetur in linea aliqua curva, & radio ducto ad punctum vel immobile, vel motu rectilineo uniformiter progrediens, describit areas circa punctum illud temporibus proportionales, urgetur a vi centripeta tendente ad idem punctum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 8:1)
Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C aequalis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 14:1)
VIII) aequalis est velocitati corporis dimidio intervalli SP circulum circa idem S uniformiter describentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:3)
Iisdem positis, dico quod area figurae DES, radio indefinito SD descripta, aequalis sit areae quam corpus, radio dimidium lateris recti figurae DES aequante, circa centrum S uniformiter gyrando, eodem tempore describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 18:1)
Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 20:1)
¼CD × Cc aequalem esse ½SY × Dd. Sed corporis cadentis velocitas in C aequalis est velocitati qua circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et haec velocitas ad velocitatem qua circulus radio SK describi possit, hoc est, lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in ratione SK ad ½CD, per Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:3)
XI, quod corpus cadendo describet spatium AC eodem tempore quo corpus aliud uniformiter circa centrum S gyrando, describere potest arcum OK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:4)

SEARCH

MENU NAVIGATION