라틴어 문장 검색

In vase sphaerico ABC claudatur & uniformiter comprimatur fluidum undique:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 6:2)
Et par est ratio cujuscunque corporum Systematis fluido comprimente circundati.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 26:6)
Systematis partes omnes iisdem agitabuntur motibus, ac si in vacuo constituerentur, ac solam retinerent gravitatem suam comparativam, nisi quatenus fluidum vel motibus earum nonnihil resistat, vel ad easdem compressione conglutinandas requiratur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 26:7)
Finge primum has gravitates uniformiter continuari ab A ad B, a B ad C, a C ad D &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:7)
Finge has gravitates uniformiter continuari, primam ab A ad B, secundam a B ad C, tertiam a C ad D, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:7)
Nam corpora tardescentia paulo minus resistuntur pro ratione velocitatis, & corpora accelerata paulo magis quam quae uniformiter progrediuntur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 23:5)
Igitur area PIGR per datorum momentorum subductionem uniformiter decrescente, crescunt area Y in ratione PIGR - Y, & area Z in ratione PIGR - Z. Et propterea si areae Y & Z simul incipiant & sub initio aequales sint, hae per additionem aequalium momentorum pergent esse aequales, & aequalibus itidem momentis subinde decrescentes simul evanescent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:1)
Nam si uniformis sit resistentia DK, figura aBKkT rectangulum erit sub Ba & DK, & inde rectangulum sub ½Ba & Aa aequalis erit rectangulo sub Ba & DK, & DK aequalis erit ½Aa. Quare cum DK sit exponens resistentiae, & longitudo penduli exponens gravitatis, erit resistentia ad gravitatem ut ½Aa ad longitudinem Penduli;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 44:1)
dico quod Systematum particulae ille pergent inter se temporibus proportionalibus similiter moveri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 2:2)
puta si particulae unius Systematis cum alterius particulis correspondentibus conferantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:2)
Igitur si duo sint ejusmodi Systemata, particulae correspondentes, ob similitudinem incaeptorum motuum, pergent similiter moveri usque donec sibi mutuo occurrant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:4)
Sin moveantur, quoniam ob translationum similitudinem, similes manent eorum situs inter Systematum particulas;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:12)
Hinc si corpora duo quaevis, quae similia sint & ad Systematum particulas correspondentes similiter sita, inter ipsas temporibus proportionalibus similiter moveri incipiant, sintque eorum densitates ad invicem ut densitates correspondentium particularum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 4:2)
Est enim eadem ratio partium majorum Systematis utriusque atque particularum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 4:4)
Et si similes & similiter positae Systematum partes omnes quiescant inter se:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 5:2)

SEARCH

MENU NAVIGATION