라틴어 문장 검색

In Quadraturis Sol attollet aquam ubi Luna deprimit, deprimetque ubi Sol attollit;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 14:3)
Unde fit ut aestus duo omnino maximi in Syzygiis continuis se mutuo non sequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 15:5)
Igitur Luminaria recedendo ab aequatore polum versus effectus suos gradatim amittent, & propterea minores ciebunt aestus in Syzygiis Solstitialibus quàm in AEquinoctialibus.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 16:3)
utque aestus omnium maximi in iisdem portubus non sint primi à Syzygiis sed tertii.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 19:5)
Retardantur etiam motus omnes in transitu per vada, adeò ut aestus omnium maximi, in fretis quibusdam & Fluviorum ostiis, sint quarti vel etiam quinti à Syzygiis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 19:6)
Acceleratio illa Lunae, in transitu ipsius à Quadratura C ad conjunctionem A, singulis temporis momentis facta, est ut ipsa vis accelerans EL, hoc est ut 3PK × SK ÷ SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:10)
Area igitur, quam Luna radio ad Terram ducto singulis temporis particulis aequalibus describit, est quam proximè ut summa numeri 219-46/100 & Sinus versi duplicatae distantiae Lunae à Quadratura proxima, in circulo cujus radius est unitas.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 31:1)
Attractio autem Lunae in Terram in Syzygiis est excessus gravitatis ipsius in Terram supra vim Solarem 2PK (Vide Figur. pag. 434.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:3)
In Quadraturis autem attractio illa est summa gravitatis Lunae in Terram & vis Solaris KS, qua Luna in Terram trahitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:5)
de qua, si vis mediocris ML subducatur, manebit vis 2000 qua Luna in Syzygiis distrahitur à Terra, quamque jam ante nominavi 2PK.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:15)
consideranda erit figura, quam Luna in Ellipsi illa revolvendo describit in hoc plano, hoc est Figura Cpa, cujus puncta singula p inveniuntur capiendo punctum quodvis P in Ellipsi, quod locum Lunae representet, & ducendo Sp aequalem SP, ea lege ut angulus PSp aequalis sit motui apparenti Solis à tempore Quadraturae C confecto;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:3)
foret Tangens anguli CSP ad Tangentem anguli motus medii à quadratura C computati, ut Ellipseos semidiameter SA ad ejusdem semidiametrum SC seu 68-11/12 ad 69-11/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:4)
excessus momenti in loco quovis intermedio P supra momentum in Quadratura sit ut quadratum Sinus anguli CSP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:6)
ut contentum sub sinibus angulorum trium TPI, PTN, & STN (seu distantiarum Lunae à Quadratura, Lunae à Nodo & Nodi à Sole) ad cubum Radii.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 52:11)
Hinc si a dati arcus quam minimi PM terminis P & M ad lineam Quadraturas jungentem Qq demittantur perpendicula PK, Mk, eademque producantur donec secent lineam Nodorum Nn in D & d;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 54:2)

SEARCH

MENU NAVIGATION