라틴어 문장 검색

Applicando arearum A & APS semidifferentiam ½APS - ½A vel ½A - ½APS ad lineam SN, quae ab umbilico S in tangentem PT perpendicularis est, orietur longitudo PQ.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 28:7)
) & L ipsius latere recto, quaere tum angulum Y, cujus Tangens sit ad Radium ut est semiaxium differentia AO - OD ad eorum summam AO + OD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:5)
tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:6)
Minuatur latus rectum Hyperbolae RPB in infinitum manente latere transverso, & coibit arcus PB cum recta CB, & umbilicus S cum vertice B & recta SD cum recta BD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 6:5)
Positis jam inventis, dico quod corporis cadentis velocitas in loco quovis C est ad velocitatem corporis centro B intervallo BC circulum describentis, in dimidiata ratione quam CA, distantia corporis a Circuli vel Hyperbolae vertice ulteriore A, habet ad figurae semidiametrum principalem ½AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 9:1)
Jam si figura DES Circulus est vel Hyperbola, bisecetur ejus transversa diameter AS in O, & erit SO dimidium Lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:2)
Patet hoc per Theorema X. Sin ratio illa minor vel major est quam 2 ad 1, priore casu Circulus, posteriore Hyperbola rectangula super diametro SA describi debet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:4)
ipsum de Orbis tangente perpetuo deflectere, inq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:11)
Si centro C & vertice principali V describatur sectio quaelibet Conica VRS, & a quovis ejus puncto R agatur Tangens RT occurrens axi infinite producto CV in puncto T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:2)
si conica sectio CVRS Hyperbola sit, descendet idem ad centrum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:8)
cum velocitate exeat de loco V, & perinde ut incaeperit vel oblique descendere ad centrum, vel ab eo oblique ascendere, figura CVRS vel Hyperbola sit vel Ellipsis, inveniri potest Trajectoria augendo vel minuendo angulum VCP in data aliqua ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:11)
Nam in Cycloidis tangentem TW infinite productam cadat perpendiculum CX & jungatur CT.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:1)
hac Tangente TX capiatur TY aequalis arcui TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 44:2)
De puncto Y educatur recta YZ Tangenti perpendicularis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 44:4)
adeo versus centrum intermedium C attrahitur, esset ad vim qua corpus p versus centrum s attrahitur in eadem illa ratione data, hae vires aequalibus temporibus attraherent semper corpora de tangentibus PR, pr ad arcus PQ, pq, per intervalla ipsis proportionalia RQ, rq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:9)

SEARCH

MENU NAVIGATION