라틴어 문장 검색

Quod si bis medietatem ducas, aequus erit extremitatibus.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:3)
Sin vero disiuncta sit, quod fit ex utrisque extremitatibus compositis, hoc ex duabus medietatibus redditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:5)
Illud quoque subtilius, quod multi huius disciplinae periti nisi Nicomachus nunquam antea perspexerunt, quod in omni dispositione vel continua vel disiuncta, quod continetur sub duabus extremitatibus minus est eo numero, qui ex medietate conficitur, tantum, quantum possunt duae sub se differentiae continere, quae inter ipsos sunt terminos constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:3)
Quod si medium terminum, id est v, in semet ipsum multiplicaveris, quinquies quinque faciunt xxv Et hic numerus ab eo, quem extremitates colligunt, quaternario maior est, quem scilicet differentiae conficiunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:5)
Recte igitur dictum est, in hac huiusmodi dispositione, quod continetur sub extremitatibus, minus esse illo numero, qui fit ex medietate, tantum, quantum differentiae in se multiplicatae restituunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:8)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
Tetragonus j
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 23:1)
Tetragonus iiij dupla
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 25:1)
Tetragonus viiij sesqualtera
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 27:1)
Tetragonus xvj sesquitertia
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 29:1)
Tetragonus xxv sesquiquarta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 31:1)
Tetragonus xxxvj sesquiquinta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 33:1)
Tetragonus xlviiij sesquisexta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 35:1)
Sint enim duo tetragoni iiij scilicet et viiij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:9)

SEARCH

MENU NAVIGATION