라틴어 문장 검색

ut 68-11/12 ad 69-11/12, erit motus mediocris horarius Nodorum in Ellipsi ad 16". 21"'.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:13)
Hinc si Cometae in orbem redeunt, orbes erunt Ellipses, & tempora periodica erunt ad tempora periodica Planetarum in ratione sesquialtera transversorum axium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 24:2)
Nam caudae quae tunc nascuntur, conservando motum suum & interea versus Solem gravitando, movebuntur circa Solem in Ellipsibus pro more capitum, & per motum illum capita semper comitabuntur & iis liberrimè adhaerebunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 50:13)
nobis etiam est munus suscipiendum contentionis, quam, dum involvimur, expedire, superare debemus, eam in catenam, in progressum quendam ad unitatem transmutantes.
(교황, 프란치스코, 회칙, 신앙의 빛 106:7)
" Fortuna saevo laeta negotio et ludum insolentem ludere pertinax transmutat incertos honores, nunc mihi nunc alii benigna.
(퀸투스 호라티우스 플라쿠스, Carmina, Book 3권, Poem 2914)
verbum enim ex verbis intelligi, quod inter vitia ellipsis vocatur:
(퀸틸리아누스, 변론 가정 교육, Liber VIII 240:3)
itaque parhypate, quae in harmonia distat ab hypate hemitonium, in chroma transmutata habet hemitonium.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 4장31)
ea autem si duplicia aut triplicia facta fuerint, uti percolationibus transmutari possint, multo salubriorem et suaviorem aquae usum efficient;
(비트루비우스 폴리오, 건축술에 관하여, LIBER OCTAVUS, 6장70)
) differentia virium quibus corpus P in Ellipsi immota VPK, & corpus p in Ellipsi mobili vpk revolvuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 8:17)
motus mediocris Nodorum in Ellipsi erit ad motum mediocrem Nodorum in circulo, ut Ellipsis ad circulum, id est ut Ta ad TA, seu 68-11/12 ad 69-11/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:4)
Vis autem qua corpus in circulo ad distantiam CV ea cum velocitate revolvi posset quam corpus in Ellipsi revolvens habet in V, est ad vim qua corpus in Ellipsi revolvens urgetur in Apside V, ut dimidium lateris recti Ellipseos ad circuli semidiametrum CV, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 8:10)
Unde vicissim si vis sit ut distantia, movebitur corpus in Ellipsi centrum habente in centro virium, aut forte in circulo, in quem Ellipsis migrare potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 68:2)
consideranda erit figura, quam Luna in Ellipsi illa revolvendo describit in hoc plano, hoc est Figura Cpa, cujus puncta singula p inveniuntur capiendo punctum quodvis P in Ellipsi, quod locum Lunae representet, & ducendo Sp aequalem SP, ea lege ut angulus PSp aequalis sit motui apparenti Solis à tempore Quadraturae C confecto;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:3)
Nam si descriptae Ellipses essent sibi invicem aequales, tempora periodica, per Theorema superius, forent in dimidiata ratione corporis S ad summam corporum S + P. Minuatur in hac ratione tempus periodicum in Ellipsi posteriore, & tempora periodica evadent aequalia, Ellipseos autem axis transversus per Theorema VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 19:1)

SEARCH

MENU NAVIGATION