라틴어 문장 검색

proportionalis {Cf - CF} ÷ FG est ut Medii densitas & ut CFq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 64:6)
& inde Medii densitas ut {Cf - CF} ÷ FG directe & CFq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 64:8)
fiet Medii densitas ut {FG - kl} ÷ {CF × {FG + kl}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 65:3)
& Medii densitas, quae fuit ut {Cf - CF} ÷ CF quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 65:10)
Sit Linea ACK semicirculus super diametro AK descriptus, & requiratur Medii densitas quae faciat ut Projectile in hac linea moveatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 68:2)
Pro CF, FG + kl & FG - kl scribantur hi earum valores, & Medii densitas quae erat ut {FG - kl} ÷ {CF in FG + kl} jam fiet ut S ÷ {R [sqrt]{1 + QQ}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:13)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)
Igitur si corpus C certa cum velocitate, secundum lineam ipsi OK parallelam, exeat de loco L, & Medii densitas in singulis locis C sit ut longitudo tangentis CT, & resistentia etiam in loco aliquo C sit ad vim gravitatis ut OB ad OK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:2)
Quo pacto prodiret Medii densitas ut -a ÷ e.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 73:2)
Negativam autem densitatem (hoc est quae motus corporum accelerat) Natura non admittit, & propterea naturaliter fieri non potest ut corpus ascendendo ab A describat circuli quadrantem AL.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 73:3)
Sit linea ALCK Parabola, axem habens OL horizonti AK perpendicularem, & requiratur Medii densitas quae faciat ut projectile in ipsa moveatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 74:2)
tertius item terminus oo ÷ b pro Roo, & ejus coefficiens 1 ÷ b pro R. Cum vero plures non sint termini, debebit quarti termini So^3 coefficiens S evanescere, & propterea quantitas S ÷ R[sqrt]{1 + QQ} cui Medii densitas proportionalis est, nihil erit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 75:6)
Nulla igitur Medii densitate movebitur Projectile in Parabola, uti olim demonstravit Galilaeus. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 75:7)
& quaeratur Medii densitas quae faciat ut Projectile moveatur in hac linea.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 77:3)
coefficientes m ÷ n - bb ÷ aa, bb ÷ a^3 & bb ÷ a^4 scribendae sunt, in Regula superiore, pro Q, R & S. Quo facto prodit medii densitas ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:9)

SEARCH

MENU NAVIGATION