라틴어 문장 검색

ut ejus motus amissus, quo tempore progrediendo longitudinem semidiametri suae describit, est ad ejus motum totum sub initio, ita motus quem solidum quodvis datum, in Fluido eodem jam facto subtilissimo, describendo diametri suae longitudinem amitteret, est ad ejus motum totum sub initio quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:3)
Sin resistentia, augendo solidum Sphaericum, augeatur in minore quam duplicata ratione diametri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 74:2)
eadem diminuendo particulas Fluidi, diminuetur in ratione qua resistentia aucta deficit a ratione duplicata diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 74:3)
Globum ligneum pondere unciarum Romanarum 57-7/22, diametro digitorum Londinensium 6-7/8 fabricatum, filo tenui ab unco satis firmo suspendi, ita ut inter uncum & centrum oscillationis Globi distantia esset pedum 10½.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 78:2)
Postea Globum plumbeum, diametro digitorum duorum & pondere unciarum Romanarum 26¼ suspendi filo eodem, sic ut inter centrum Globi & punctum suspensionis intervallum esset pedum 10½, & numerabam oscillationes quibus data motus pars amitteretur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 85:1)
Diametri Globorum duorum erant 6-7/8 & 2 digitorum, & harum quadrata sunt ad invicem ut 47¼ & 4, seu 11-13/16 & 1 quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 88:9)
Ergo resistentiae Globorum aequivelocium erant in minore ratione quam duplicata diametrorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 88:10)
Hanc accurate definire non potui, sed majorem tamen inveni quam partem tertiam resistentiae totius minoris penduli, & inde didici quod resistentiae Globorum, dempta fili resistentia, sunt quamproxime in dimidiata ratione diametrorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 88:12)
Nam ratio 7-1/3 - 1/3 ad 1 - 1/3, id est 7 ad 2/3 seu 10½ ad 1, non longe abest a diametrorum ratione duplicata 11-13/16 ad 1.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 88:13)
Sunt autem Globorum diametri 10¾ & 6-7/8;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:23)
Igitur resistentiarum partes illae quae sunt (paribus Globis) ut quadrata velocitatum, sunt etiam (paribus velocitatibus) ut quadrata diametrorum Globorum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:26)
Si Globi sumantur in proportione Geometrica, puta quorum diametri sint digitorum 4, 8, 16, 32;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 90:4)
Globus autem plumbeus pondere 166-1/6 unciarum, diametro 3-5/8 digitorum, movebatur ut in Tabula sequente descripsimus, existente videlicet longitudine penduli a puncto suspensionis ad punctum quoddam in filo notatum 126 digitorum, ad oscillationis autem centrum 134-1/8 digitorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 91:4)
Nam stantibus quae in Propositione superiore constructa sunt, si linea quaevis Physica, EF singulis vibrationibus describendo spatium PS, urgeatur in extremis itus & reditus cujusque locis P & S, a vi Elastica quae ipsius ponderi aequetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:1)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)

SEARCH

MENU NAVIGATION