라틴어 문장 검색

Sit ABC Parabola umbilicum habens S. Chordâ AC bisectâ in I abscindatur segmentum ABCI, cujus diameter sit I[mu] & vertex [mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 44:1)
Jungatur OS, & producatur ea ad [xi], ut sit S[xi] aequalis 2SO.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 44:3)
area quam Radio ad punctum S ducto describeret, aequalis esset areae Parabolicae ASC[mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:2)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)
Quare AC est ad longitudinem in tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:4)
Cometa igitur ea cum velocitate, quam habet in altitudine S[mu] + 2/3I[mu], eodem tempore describeret chordam AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 52:2)
Si Cometa motu omni privatus de altitudine SN seu S[mu] + 1/3I[mu] demitteretur, ut caderet in Solem, & ea semper vi uniformiter continuata urgeretur in Solem qua urgetur sub initio;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 54:1)
Unde cum pondus Cometae in Solem in altitudine SN sit ad ipsius pondus in Solem in altitudine SP, ut SP ad S[mu]:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:4)
Designent S Solem, T, t, [tau] tria loca Terrae in orbe magno, TA, tB, [tau]C observatas tres longitudines Cometae, V tempus inter observationem primam & secundam, W tempus inter secundam ac tertiam, X longitudinem quam Cometa toto illo tempore ea cum velocitate quam habet in mediocri Telluris à Sole distantia, describere posset, & tV perpendiculum in chordam T[tau].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:1)
In longitudine media tB sumatur utcunque punctum B, & inde versus Solem S ducatur linea BE, quae sit ad Sagittam tV, ut contentum sub SB & St quadrato ad cubum hypotenusae trianguli rectanguli, cujus latera sunt SB & tangens latitudinis Cometae in observatione secunda ad radium tB.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:2)
Cape I[sigma] aequalem 3I[lambda], & per Solem S age occultam [sigma][xi] aequalem 3S[sigma] + 3i[lambda].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:5)
Et deletis jam literis A, E, C, I, à puncto B versus punctum [xi] duc occultam novam BE, quae sit ad priorem BE in duplicata ratione distantiae BS ad quantitatem S[mu] + 1/3i[lambda].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:6)
In IA producta capiatur ID aequalis S[mu] + 2/3i[lambda], & agatur occulta OD.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 7:3)
Denique (per Prop. XIX. Lib. I.) umbilico S, per loca illa duo describatur Parabola, & haec erit Trajectoria Cometae. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:8)
Sintque P, Q, R, S, T loca Cometae in observationibus supra descriptis:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 17:4)

SEARCH

MENU NAVIGATION