라틴어 문장 검색

nimirum Orbes evanescentes ex quibus Sphaera ultimo constat, ubi Orbium illorum numerus augetur & crassitudo minuitur in infinitum, juxta Methodum sub initio in Lemmatis generalibus expositam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 19:2)
Igitur si corpus gravitate omni destitutum in spatiis liberis sola vi insita moveatur, ac detur tum motus totus sub initio, tum etiam motus reliquus post spatium aliquod confectum, dabitur spatium totum quod corpus infinito tempore describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 4:2)
Erit enim spatium illud ad spatium jam descriptum ut motus totus sub initio ad motus illius partem amissam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 4:3)
Dividatur tempus in particulas aequales, & si ipsis particularum initiis agat vis resistentiae impulsu unico, quae sit ut velocitas, erit decrementum velocitatis singulis temporis particulis ut eadem velocitas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:2)
Proinde si ex aequali particularum numero componantur tempora quaelibet aequalia, erunt velocitates ipsis temporum initiis, ut termini in progressione continua, qui per saltum capiuntur, omisso passim aequali terminorum intermediorum numero.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:5)
AB, DG ad Asymptoton AC perpendiculares, & exponatur tum corporis velocitas tum resistentia Medii, ipso motus initio, per lineam quamvis datam AC, elapso autem tempore aliquo per lineam indefinitam DC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:3)
Corpore ascendente, exponatur gravitas per datum quodvis rectangulum BC, & resistentia Medii initio ascensus per rectangulum BD sumptum ad contrarias partes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 17:1)
E loco quovis D egrediatur Projectile secundum lineam quamvis rectam DP, & per longitudinem DP exponatur ejusdem velocitas sub initio motus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:1)
A puncto P ad lineam Horizontalem DC demittatur perpendiculum PC, & secetur DC in A ut sit DA ad AC ut resistentia Medii ex motu in altitudinem sub initio orta, ad vim gravitatis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:2)
vel (quod perinde est) ut sit rectangulum sub DA & DP ad rectangulum sub AC & CP ut resistentia tota sub initio motus ad vim Gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:3)
hujus) ut area DR × AB - RDGT, hoc est, ut linea Rr. Ipso autem motus initio area RDGT aequalis est rectangulo DR × AQ, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:8)
adeo ut motus in altitudinem ad motum in longitudinem sub initio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:10)
Rr ad DR sub initio ut altitudo ad longitudinem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:12)
Hinc si vertice D, Diametro DE deorsum producta, & latere recto quod sit ad 2DP ut resistentia tota, ipso motus initio, ad vim gravitatis, Parabola construatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:2)
Nam Latus rectum Parabolae hujus, ipso motus initio, est DV quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:4)

SEARCH

MENU NAVIGATION