라틴어 문장 검색

sed eum, qui relinquitur, numerum sibi ipsi videbis aequalem.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:2)
Quibus item si quis ternarium demat, iij relinquentur, de quibus iij detrahi nequeunt, atque hic est sibi ipsi aequalis.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 3:3)
Propositis enim tribus, ut dictum est, terminis aequis proportionibus ordinatis ultimum semper medio detrahamus et ipsum quidem ultimum primum terminum conlocemus, quod de medio relinquitur, secundum.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:11)
De tertio vero, id est cxxviij, aufer unum primum id est viij et duos secundos, qui sunt reliqui, id est bis xxiiij et relinquuntur lxxij.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 3:2)
Pone enim primum minori aequum, id est viij, et ex secundo aufer primum, xvj relinquentur;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 3:6)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Quod si uno relicto priori tertium iunxero secundus mihi quadratus efficitur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:2)
Nam si uni relicto binario ternarium adposuero, quaternarius mihi quadratus exoritur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:3)
Quod si rursus relicto medio quaternario quinarium similiter adgregavero, quadratus mihi tertius, id est novenarius, procreatur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:4)
Pentagoni vero natura fuit ex duobus interpositis relictisque, qui se ternario vincerent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:4)
Nam quoniam lineares numeros esse diximus, qui ab uno profecti in infinitum currerent, ut sunt j ij iij iiij v vj vij viij viiij x, his autem ordinatim compositis et ad se invicem cum distantia iunctis superficies nascebantur, ut, si unum et duo iungeres, primus triangulus nasceretur, id est tres, et cum his adiungeremus tertium, id est ternarium, senarius triangulus rursus occurreret, et post hos tetragoni uno intermisso, pentagoni vero duobus, exagoni tribus, eptagoni relictis quattuor nascebantur:
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:3)
Et quotcunque tetragoni defuerint, totiens eam curtam esse dicemus;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:10)
ut si unitas defuerit, primus quadratus, curtam, quam Graeci κολουρον vocant;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:11)
Namque duorum atque unius sola unitas differentia est, sed idem duo a quaternario solo binario relinquuntur.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:6)
Namque si in tribus terminis singuli relinquantur, binarius semper intererit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:14)

SEARCH

MENU NAVIGATION