라틴어 문장 검색

& annuli motus iste circa axem Cylindri uniformiter continuatus, ad ejusdem motum uniformem circa diametrum propriam, eodem tempore periodico factum, ut circumferentia circuli ad duplum diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 61:3)
quarum diametri sint in progressione Geometrica:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:3)
Designet S Solem, acT Orbem magnum, a locum Terrae in observatione prima, c locum Terrae in observatione secunda, T locum Terrae in observatione ultima, & T[Aries] lineam rectam versus principium Arietis ductam.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 13:21)
Unde si detur & lucis quantitas & apparens diameter Cometae, dabitur distantia, dicendo quod distantia sit ad distantiam Planetae in ratione integra diametri ad diametrum directè & ratione dimidiata lucis ad lucem inversè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 15:4)
Porrò cum diameter Capillitii Cometarum rarò superet 8' vel 12', diameter verò Nuclei seu stellae centralis sit quasi decima vel fortè decima quinta pars diametri capillitii, patet Stellas hasce ut plurimum ejusdem esse apparentis magnitudinis cum Planetis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 15:14)
Minore igitur cum diametro apparente plus lucis emittens, multò magis illustrabitur à Sole, adeoque erit Soli multò propior.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 16:9)
Id quod etiam ex diametro capitis micrometro mensurata colligitur:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 17:8)
unitates esse, & dic AH = a, - HS = p, ½p in - IS = q, 1/3q in + SK = r, ¼r in + SL = s, 1/5s in + SM = t;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 31:12)
qui jacent ad partes puncti S versus A, & signa affirmativa terminis SK, SL, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 31:14)
qui jacent ad alteras partes puncti S. Et signis probe observatis erit RS = a + bp + cq + dr + es + ft &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 31:15)
Inventis differentiis, dic AH = a, - HS = p, p in - IS = q, q in + SK = r, r in + SL = s, s in + SM = t;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 32:13)
Sit ABC Parabola umbilicum habens S. Chordâ AC bisectâ in I abscindatur segmentum ABCI, cujus diameter sit I[mu] & vertex [mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 44:1)
Jungatur OS, & producatur ea ad [xi], ut sit S[xi] aequalis 2SO.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 44:3)
area quam Radio ad punctum S ducto describeret, aequalis esset areae Parabolicae ASC[mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:2)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)

SEARCH

MENU NAVIGATION