라틴어 문장 검색

Si igitur quinarii numeri ad ternarium comparatio consideretur, erit superpartiens ille, qui vocatur superbipartiens;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:1)
Radices autem proportionum voco numeros in superiore dispositione descriptos, quasi quibus omnis summa supradictae comparationis innititur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:8)
Nam prima pars huius vocabuli, quae multiplicis nomine possessa est, multiplicis numeri specierum vocabulo nominanda est, quae vero superparticularis est, eodem vocabulo nuncupabitur, quo superparticularis numeri species vocabantur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:8)
et quotiens totum numerum in semet ipso continuerit per multiplicis numeri species appellabitur, quam vero partem comparati numeri clauserit, secundum superparticularem comparationem habitudinemque vocabitur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:12)
Vocabunturque hi secundum proprias partes duplex superbipartiens, vel duplex supertripartiens, vel duplex superquadripartiens, et rursus triplex superbipartiens et triplex supertripartiens et triplex superquadripartiens et similiter, ut, viij ad iij comparati faciunt duplicem superbipartientem, et xvj ad vj et omnes, quicunque ab viij incipientes octonario sese numero transgrediuntur, comparati ad eos, qui a tribus inchoantes ternaria sese quantitate praetereunt.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:4)
Necesse est autem, ut quicquid fuerit solidum corpus, hoc habeat longitudinem latitudinemque et altitudinem, et quicquid haec tria in se continet, illud suo nomine solidum vocetur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:32)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Vi enim et potestate primi trianguli, id est unitatis, unitas latus est, actu vero et opere trianguli primi, id est ternarii, dualitas, quam Graeci dyada vocant.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:5)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)
Sin vero a qualibet basi profecta usque ad unitatem altitudo illa non venerit, curta vocabitur, recteque huiusmodi pyramis tali nuncupatione signatur, si usque ad extremitatem punctumque non venerit.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:3)
Pyramidis equidem figura est, sed quoniam usque ad cacumen verticis non excrevit, curta vocabitur et habebit summitatem non iam punctum, quod unitas est, sed superficiem, quod est quilibet numerus secundum basis ipsius angulos porrectus atque ultimus adgregatus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:5)
Si vero illa pyramis non solum ad unitatem extremitatemque non pervenit, sed nec ad primum quoque opere et actu multiangulum eius generis, cuius fuerit basis, bis curta vocabitur;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:8)
ut si unitas defuerit, primus quadratus, curtam, quam Graeci κολουρον vocant;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:11)
si vero duobus tetragonis deficitur, id est unitate et eo, qui sequitur, vocatur bis curta, quod Graeci δικολουρον appellant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:12)
Haec autem forma Graeco nomine scalenos vocatur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:4)

SEARCH

MENU NAVIGATION