라틴어 문장 검색

[V]IR fatuus quidam, sapienter ducere uitam Dum cupit atque parum petit addiscenda morarum Haec documenta sibi, doctoris ab ore periti Sumit, ut hec cordi studeat sex uerba reponi:
(BALDO, NOUUS ESOPUS, III. De fatuo, qui sapienciam acquirit 4:1)
Regis enim mensae solito dedit hos cocus ense Binos uel trinos nulloque nocente quaternos.
(BALDO, NOUUS ESOPUS, XXV. De ueruecibus et coco regis 26:6)
In duas enim partes divisione nihil minus est. Cum enim totum quis fuerit trina divisione partitus, spatii quidem summa minuitur, sed numerus divisionis augetur.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:8)
tertia vero, quae inpar est denominatio, vj cui par pluralitas est. Rursus si convertas, sexta pars, quae par est denominatio, iij sunt, sed ternarius inpar est;
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:9)
Est enim duodenarii medietas vj pars tertia iiij pars quarta iij pars sexta ij pars duodecima j omnisque hic cumulus redundat in xvj et totius corporis sui multitudinem vincunt.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:7)
Primus enim primum duobus superat, ut unum tres, secundus secundum quaternario, ut binarium senarius, tertius tertium sex, ut ternarium novenarius, et ad eundem ceteri modum progressionis augescunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:3)
Hoc autem trina rursus imperatione colligitur, eaque resolvendi ars datis quibuslibet tribus terminis inaequalibus quidem sed proportionaliter constitutis, id est ut eandem medius ad primum vim proportionis obtineat, quam qui est extremus, ad medium, in qualibet inaequalitatis ratione vel in multiplicibus, vel in superparticularibus, vel in superpartientibus, vel in his, qui ex his procreantur multiplicibus superparticularibus, vel multiplicibus superpartientibus, eadem atque una ratione indubitata constabit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:10)
Aut enim unum intervallum erit, quod longitudo est, aut aliquid duobus intervallis expositum est, ut si qua res longitudinem habeat et latitudinem, vel trina intervalli demensione porrigitur, si longitudine altitudine latitudineque censetur;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:28)
Unum enim intervallum duos in se continet motus, ut in tribus intervallis sex sese motuum summa conficiat hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:30)
Idem quoque et in superficiei rationem cadit, quae et ipsa solidi corporis et triplicis intervalli naturale sortitur initium, ipsa vero nec trina intervalli demensione distenditur, nec ulla crassitudine solidatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:43)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Est enim parte altera longior numerus, quicunque unitate tantum lateri crescit adiecta, ut sunt sex, scilicet bis tres, vel xij tres quater et consimiles.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:10)
Post quas proportionum habitudines tres aliae sunt, quae sine nomine feruntur quidem, vocantur autem quarta, quinta, sexta, quae superius dictis oppositae sunt.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:3)
Namque in hac dispositione iij iiij vj tres ad quattuor comparati sesquitertiam habitudinem, sex vero ad quattuor, sesqualteram reddunt.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:4)
In qua tribus terminis positis, quemadmodum est maximus terminus ad parvissimum, sic differentia minorum ad differentiam maximorum, ut sunt iij v vj. Sex ad ternarium duplus est, et sunt minores termini v et iij, maximi vero huius dispositionis vj et v. Differentia vero minorum, quinarii scilicet et ternarii, ij sunt, maiorum, quinarii et senarii, j. Qui ij ad j comparati duplum faciunt.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:7)

SEARCH

MENU NAVIGATION