라틴어 문장 검색

Quoniam vis 3IT seu 3PK in circulo est ad vim 3IT seu 3pK in Ellipsi, ut PK ad pK, seu AT ad aT;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:5)
Sed anguli illi (per ea quae in praecedente Propositione exposuimus) sunt motus Nodorum, quo tempore Luna in circulo arcum PM, in Ellipsi arcum pm percurrit:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:11)
& propterea motus Nodorum in Circulo & Ellipsi aequarentur inter se.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:12)
ideoque fg aequalis est ce × fp ÷ cp, & propterea angulus, quem fg revera subtendit, est ad angulum priorem, quem FG subtendit, hoc est motus Nodorum in Ellipsi ad motum Nodorum in Circulo, ut haec fg seu ce × fp ÷ cp ad priorem fg seu ce × fY ÷ cY, id est ut fp × cY ad cp × fY, seu fp ad fY & cY ad cp;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:15)
Et propterea, cum area posterior proportionalis sit motui Nodorum in Circulo, erit area prior proportionalis motui Nodorum in Ellipsi. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:18)
ut 68-11/12 ad 69-11/12, erit motus mediocris horarius Nodorum in Ellipsi ad 16". 21"'.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:13)
Hinc cum vis centrifuga partium Terrae à diurno Terrae motu oriunda, quae est ad vim gravitatis ut 1 ad 291, efficiat ut altitudo Aquae sub AEquatore superet ejus altitudinem sub polis mensura pedum Parisiensium 85200, vis Solaris, de qua egimus, cum sit ad vim gravitatis ut 1 ad 12868200, atque adeo ad vim illam centrifugam ut 291 ad 12868200 seu 1 ad 44221, efficiet ut altitudo aquae in regionibus sub Sole & Soli oppositis superet altitudinem ejus in locis quae 90 gradibus distant à Sole, mensura tantum pedis unius Parisiensis & digitorum undecim.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 42:2)
Si APEp Terram designet uniformiter densam, centroque C & polis P, p & aequatore AE delineatam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:1)
erit vis & efficacia tota particularum omnium, ad Terram circulariter movendam, quadruplo minor quàm vis tota particularum totidem in AEquatoris circulo AE, uniformiter per totum circuitum in morem annuli dispositarum, ad Terram consimili motu circulari movendam.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:5)
Sit enim IK circulus minor AEquatori AE parallelus, sitque L particula Terrae in circulo illo extra globum Pape sita.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:1)
Et si particulae illae omnes locarentur in AEquatore, efficacia virium omnium LN evanesceret, & efficacia virium omnium MN augeretur in ratione quatuor ad tria.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:7)
Quare excessus ille, qui est efficacia absoluta particularum in locis propriis, est pars quarta efficaciae particularum earundem in AEquatore.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:8)
si annulus iste Terram secundum aequatorem cingeret, & uterque simul circa diametrum annuli revolveretur, motus annuli esset ad motum globi interioris (per hujus Lem. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 5:6)
& propterea (per Lem. I.) si materia annuli per totam globi superficiem, in morem figurae PapAPepE, ad superiorem illam Terrae partem constituendam spargeretur, vis & efficacia tota particularum omnium ad Terram circa quamvis AEquatoris diametrum rotandam, atque adeo ad movenda puncta aequinoctialia, evaderet quadruplo minor quàm prius.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 5:16)
Quod si figurae orbium mutentur, Terraque ad aequatorem AE, ob densitatem materiae ad centrum, jam altius ascendat quàm prius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:11)

SEARCH

MENU NAVIGATION