라틴어 문장 검색

Cum hoc ita sit descriptum et explicatum, sive per hibernas lineas sive per aestivas sive per aequinoctiales aut etiam per menstruas in subiectionibus rationes horarum erunt ex analemmatos describendae, subiciunturque in eo multae varietates et genera horologiorum et describuntur rationibus his artificiosis.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 7장29)
omnium autem figurarum descriptionumque earum effectus unus, uti dies aequinoctialis brumalisque itemque solstitialis in duodecim partes aequaliter sit divisus.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 7장30)
Aquarii vero pisciumque punctis uti gradibus scandens orbiculi foramen in ariete tangendo octavam partem aqua temperate salienti praestat aequinoctiales horas.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 8장53)
a cancro cum proclinat et peragit per leonem et virginem ad librae partis octavae puncta revertendo et gradatim corripiendo spatia contrahit horas, et ita perveniens ad puncta librae aequinoctiales rursus reddit horas.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 8장55)
Definire & velocitates Pendulorum in locis singulis, & Tempora quibus tum oscillationes totae, tum singulae oscillationum partes peraguntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 31:1)
Paribus igitur Pendulorum velocitatibus motus aequales in aere oscillationibus 535 & in aqua oscillationibus 123/110 amissi sunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 97:5)
adeo ut Cycloidum perimetri & perimetrorum partes similes, aequalia erunt tempora quibus perimetrorum partes similes Oscillationibus similibus describuntur, & propterea Oscillationes omnes erunt Isochronae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:3)
Si corpora Funependula resistuntur in duplicata ratione velocitatum, differentiae inter tempora oscillationum in Medio resistente ac tempora oscillationum in ejusdem gravitatis specificae Medio non resistente, erunt arcubus oscillando descriptis proportionales, quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 20:1)
Nam tempora oscillationum pyxidis plenae minora sunt quam tempora oscillationum pyxidis vacuae, & propterea resistentia pyxidis plenae in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:8)
) si distantiae inter undarum loca altissima A, C, E, & infima B, D, F aequentur duplae penduli longitudini, partes altissimae A, C, E tempore oscillationis unius evadent infimae, & tempore oscillationis alterius denuo ascendent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:10)
cum tempora quibus corpora describant singulas arcuum partes correspondentes sint ut tempora oscillationum totarum, erunt velocitates ad invicem in correspondentibus oscillationum partibus, ut vires motrices & tota oscillationum tempora directe & quantitates materiae reciproce:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 3:6)
ab oriente aequinoctiali solanum, a meridie austrum, ab occidente aequinoctiali favonium, ab septentrionali septentrionem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER PRIMUS, 6장24)
Unde cum in Oscillationibus inaequalibus describantur aequalibus temporibus arcus totis Oscillationum arcubus proportionales, habentur ex datis temporibus & velocitates & arcus descripti in Oscillationibus universis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:15)
quoniam figurae consimiles sunt, vires Solis & Lunae, quibus puncta aequinoctialia regrediuntur, efficerent ut figurarum reliquarum seorsim spectatarum puncta eadem aequinoctialia eadem cum velocitate regrederentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:4)
Est ergo tempus totum in circulo HKM, Oscillationi in una Cycloide respondens, ad tempus totum in circulo hkm Oscillationi in altera Cycloide respondens, ut semiperiferia HKM ad medium proportionale inter hanc semiperiferiam & semiperiferiam circuli alterius hkm, id est in dimidiata ratione diametri HM ad diametrum hm, hoc est in dimidiata ratione perimetri Cycloidis primae ad perimetrum Cycloidis alterius, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:11)

SEARCH

MENU NAVIGATION