라틴어 문장 검색

& area AbNK augebitur vel diminuetur in progressione Arithmetica, dum vires CK in progressione Geometrica sumuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 29:6)
Simili argumentatione probari potest, quod si gravitas particularum Fluidi diminuatur in triplicata ratione distantiarum a centro;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:1)
) sumantur in progressione Arithmetica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:9)
) sumantur in progressione Arithmetica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:18)
Rursus si gravitas particularum Fluidi in omnibus distantiis eadem sit, & distantiae sint in progressione Arithmetica, densitates erunt in progressione Geometrica, uti Vir Cl.\ Edmundus Halleius invenit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:22)
Si gravitas sit ut distantia, & quadrata distantiarum sint in progressione Arithmetica, densitates erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:23)
Fingi possunt aliae condensationis leges, ut quod cubus vis comprimentis sit ut quadrato-quadratum densitatis, seu triplicata ratio Vis aequalis quadruplicatae rationi densitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:26)
Si vires centrifugae sint reciproce in triplicata vel quadruplicata ratione distantiarum, cubi virium comprimentium erunt ut quadrato-cubi vel cubo-cubi densitatum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:2)
Et universaliter, si resistentia sit in triplicata vel alia quavis ratione velocitatis, differentia erit in eadem ratione arcus totius;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 53:2)
Patet enim, per Corol. 1. Prop. XLV. Lib. I. quod si distantia Lunae à centro Terrae dicatur D, vis à qua motus talis oriatur, sit reciproce ut D^{2-4/243}, id est reciprocè ut ea ipsius D dignitas, cujus index est 2-4/243, hoc est in ratione distantiae paulo majore quam duplicata inverse, sed quae vicibus 60¾ propius ad duplicatam quam ad triplicatam accedit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 9:5)
Si Parallaxis Solis statuatur minor quam 20", debebit quantitas materiae in Terra diminui in triplicata ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 38:5)
) in triplicata ratione diametri apparentis Solaris.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 7:3)
In minoribus enim distantiis majores sunt eorum effectus, in majoribus minores, idque in triplicata ratione diametrorum apparentium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 15:2)
Tandem ut constaret an Cometa in Orbe sic invento verè moveretur, collegi per operationes partim Arithmeticas partim Graphicas, loca Cometae in hoc orbe ad observationum quarundam tempora:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 27:1)
Deinde per loca illa inventa, circa centrum Solis ceu umbilicum, per operationes Arithmeticas, ope Prop. XXI. Lib. I. institutas, describatur Sectio Conica:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 3:7)

SEARCH

MENU NAVIGATION