라틴어 문장 검색

Tum per puncta A, B, C, duc circumferentiam circuli, eamque biseca in i, ut & chordam AC in I. Age occultam Si secantem AC in [lambda], & comple parallelogrammum iI[lambda][mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:4)
Deinde si per G, g, [gamma] ducatur circumferentia circuli Gg[gamma] secans rectam [tau]C in Z:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:2)
Et si in AC, ac, [alpha][kappa] capiantur AF, af, [alpha][phi] ipsis CG, cg, [kappa][gamma] respectivè aequales, & per puncta F, f, [phi] ducatur circumferentia circuli Ff[phi] secans rectam AT in X;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:4)
patet quod motus perpetuò transfertur à centro ad circumferentiam Vorticis, & per infinitatem circumferentiae absorbetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:3)
Compleatur parallelogrammum XYGT, & ex natura harum Hyperbolarum facile colligitur quod recta GT tangit Hyperbolam in G, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 91:1)
Sin figura superior RPB Hyperbola est, describatur ad eandem diametrum principalem AB Hyperbola rectangula BD:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 6:2)
Quare cum sit LN ad KH ut IM ad radium OP, & EG ad BC ut HK ad circumferentiam PHShP, & vicissim EG ad HK ut BC ad circumferentiam PHShP, id est (si circumferentia dicatur Z) ut OP × BC ÷ Z ad OP, & ex aequo LN ad EG ut IM ad OP × BC ÷ Z:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:8)
Esto circuli circumferentia SQPA, centrum vis centripetae S, corpus in circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA & rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob similitudinem triangulorum ZQR, ZTP, SPA erit RP quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 50:1)
Gyretur corpus in circumferentia circuli, requiritur lex vis centripetae tendentis ad punctum aliquod in circumferentia datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 49:1)
In circumferentia PHSh capiantur aequales arcus HI, IK vel hi, ik, eam habentes rationem ad circumferentiam totam quam habent aequales rectae EF, FG ad pulsuum intervallum totum BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:1)
Ponatur indefinite, quod linea AGK Hyperbola sit, centro X Asymptotis MX, NX, ea lege descripta, ut constructo rectangulo XZDN cujus latus ZD secet Hyperbolam in G & Asymptoton ejus in V, fuerit VG reciproce ut ipsius ZX vel DN dignitas aliqua ND^n, cujus index est numerus n:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 81:2)
Ergo tempus quo pulsus percurrit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositae, ut BC ad Z × A ÷ PO, id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:17)
Asymptotis rectangulis CD, CH descripta Hyperbola quavis BbEe secante perpendicula AB, ab, DE, de, in B, b, E, e, exponantur velocitates initiales per perpendicula AB, DE, & tempora per lineas Aa, Dd. Est ergo ut Aa ad Dd ita (per Hypothesin) DE ad AB, & ita (ex natura Hyperbolae) CA ad CD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:1)

SEARCH

MENU NAVIGATION