라틴어 문장 검색

Linearum igitur AB, Kk, Ll, Mm quadrata sunt ut earundem differentiae, & idcirco cum quadrata velocitatum fuerint etiam ut ipsarum differentiae, similis erit ambarum progressio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:13)
Quo demonstrato, consequens est etiam ut areae his lineis descriptae sint in progressione consimili cum spatiis quae velocitatibus describuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:14)
in progressione eadem inversa, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:21)
dico quod vires illae absolutae sunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 38:3)
erunt in progressione Geometrica. Q. E. D. Et simili argumento, in ascensu corporis, sumendo, ad contrariam partem puncti A, aequales areas ABmi, imnk, knol, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:17)
adeo CF, CH (vel Ch) & Cf in progressione Arithmetica, & inde HF semidifferentia est ipsarum Cf & CF;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 63:7)
Si corpus resistitur partim in ratione velocitatis, partim in velocitatis ratione duplicata, & sola vi insita in Medio similari movetur, sumantur autem tempora in progressione Arithmetica:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 2:1)
quantitates velocitatibus reciproce proportionales, data quadam quantitate auctae, erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 2:2)
dico quod velocitas exponi potest per longitudinem DF, cujus reciproca GD una cum data CG componat longitudinem CD in progressione Geometrica crescentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 4:4)
Et si quantitas GD ipsi 1 ÷ GD reciproce proportionalis quantitate data CG augeatur, summa CD, tempore ABED uniformiter crescente, crescet in progressione Geometrica. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 5:13)
& velocitas erit ut longitudo GD, quae cum data CG componit longitudinem CD, in Progressione Geometrica decrescentem, interea dum spatium RSED augetur in Arithmetica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 10:2)
Iisdem positis, dico quod spatium ascensu vel descensu descriptum, est ut summa vel differentia areae per quam tempus exponitur, & areae cujusdam alterius quae augetur vel diminuitur in progressione Arithmetica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 28:1)
si vires ex resistentia & gravitate compositae sumantur in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 28:2)
eo ut progressio gravitatum specificarum a fundo A ad summitatem Fluidi continua reddatur, & in distantiis quibusvis continue proportionalibus SA, SD, SQ, densitates AH, DL, QT, semper existentes continue proportionales, manebunt etiamnum continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:28)
Designet S centrum, & SA, SB, SC, SD, SE distantias in Progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:1)

SEARCH

MENU NAVIGATION