라틴어 문장 검색

& quod in Praxi mechanica sufficit circulum semel describere, deinde regulam interminatam CH ita applicare ad punctum C, ut ejus pars FH, circulo & rectae FK interjecta, aequalis sit ejus parti CE inter punctum C & rectam HK sitae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:14)
Hisce circumstantiis pressionem nil mutari colligitur, applicando demonstrationem Theorematis hujus ad Casus singulos Fluidorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:4)
Eadem Demonstratione colligitur etiam (per Prop. XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 20:2)
Nam similis est horum Casuum Demonstratio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 23:18)
Res manifesta est, nec indiget demonstratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 65:4)
Optarim itaque (cum demonstratio vacui ex his dependeat) ut experimenta cum Globis & pluribus & majoribus & magis accuratis tentarentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 90:3)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Patet hoc ex demonstratione casus primi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:6)
Postea si vires constanter impressae, quibus globi in motibus suis perseverant, cessarent, & omnia legibus Mechanicis permitterentur, languesceret paulatim motus globorum (ob rationem in Corol. 3. & 4.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 23:6)
Deinde verò si, viribus illis cessantibus quibus vas & globus certis motibus revolvebantur, permittatur Systema totum Legibus Mechanicis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:7)
& verisimile est quod, etiamsi Demonstrationum gratia Hypothesin talem initio Sectionis hujus proposuerim ut Resistentia velocitati proportionalis esset, tamen Resistentia in minori sit ratione quàm ea velocitatis est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:11)
cum tamen secundum leges Mechanicas materia Vorticis in spatio angustiore inter A & C velociùs moveri debeat quàm in spatio latiore inter D & F;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:6)
In hac demonstratione supposui angulum BEG, qui distantia est Nodorum à Quadraturis, uniformiter augeri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 33:1)
Constructionis hujus demonstratio ex Lemmatibus consequitur:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 9:1)
Qui sint hi adeo notum probatumque est, ut demonstratione non egeat;
(소 플리니우스, 편지들, 7권, letter 9 16:1)

SEARCH

MENU NAVIGATION