라틴어 문장 검색

si Polygonum lateribus infinite diminutis coincidat cum circulo, ut quadratum arcus dato tempore descripti applicatum ad radium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:7)
÷ QR quae ultimo fit ubi lineolae PR, QR in infinitum diminuuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 25:4)
Ipsi igitur AD duc parallelam CF, occurrentem BD in F, & in ea ultima ratione sectam in E, & DE tangens erit, propterea quod CF & evanescens IH parallelae sunt, & in E & P similiter sectae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 20:5)
Hinc si agatur BC secans PQ in r, & in PT capiatur Pt in ratione ad Pr quam habet PT ad PR, erit Bt Tangens Conicae sectionis ad punctum B. Nam concipe punctum D coire cum puncto B ita ut, chorda BD evanescente, BT Tangens evadet;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 29:2)
& lineis Rr, Tt evanescentibus, coit punctum d cum puncto D. Transit ergo sectio Conica per puncta quinq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 40:7)
& propterea ut area Ellipseos totius ad aream circuli totius. Q. E. D. Argumento prolixiore probari potest analogia ultima in Sectoribus evanescentibus BSP, OCF:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:14)
qui tamen propemodum evanescet per ulteriorem Constructionem sequentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:18)
Sit angulus iste N. Tum capiatur & angulus D ad angulum B, ut est sinus iste anguli ACQ ad Radium, & angulus E ad angulum N - ACQ + D, ut est longitudo L ad longitudinem eandem L cosinu anguli ACQ + ½D diminutam, ubi angulus iste recto minor est, auctam ubi major.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:10)
Postea capiatur tum angulus F ad angulum B, ut est sinus anguli ACQ + E ad radium, tum angulus G ad angulum N - ACQ - E + F ut est longitudo L ad Longitudinem eandem cosinu anguli ACQ + E + ½F diminutam ubi angulus iste recto minor est, auctam ubi major.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:11)
& angulus I ad angulum N - ACQ - E - G + H, ut est longitudo L ad eandem longitudinem cosinu anguli ACQ + E + G + ½H diminutam, ubi angulus iste recto minor est, auctam ubi major.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:13)
Et simili argumento si figura RPB Parabola est, & eodem vertice principali B describatur alia Parabola BED, quae semper maneat data, interea dum Parabola prior in cujus perimetro corpus P movetur, diminuto & in nihilum redacto ejus Latere recto, conveniat cum linea CB, fiet segmentum Parabolicum BDEB proportionale tempori quo corpus illud P vel C descendet ad centrum B. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 7:2)
D data cum velocitate vel sursum vel deorsum projiciatur, & detur lex vis centripetae, invenietur velocitas ejus in alio quovis loco e, erigendo ordinatam eg, & capiendo velocitatem illam ad velocitatem in loco D ut est latus quadratum rectanguli PQRD area curvilinea DFge vel aucti, si locus e est loco D inferior, vel diminuti, si is superior est, ad latus quadratum rectanguli solius PQRD, id est ut [sqrt]{PQRD + vel - DFge} ad [sqrt]PQRD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 45:3)
quantitas A distantia corporis a centro in alio quovis Orbis puncto, & vis centripeta semper sit ut ipsius A dignitas quaelibet A^{n - 1}, cujus Index n - 1 est numerus quilibet n unitate diminutus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 6:5)
X in infinitum diminutam, rationes ultimae erunt RGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 17:20)
adeo quod recta VP tanget hanc curvam in puncto P. Circuli nom radius sensim auctus aequetur tandem distantiae CP, & ob similitudinem figurae evanescentis Pnomq & figurae PFGVI, ratio ultima lineolarum evanescentium Pm, Pn, Po, Pq, id est ratio incrementorum momentaneorum curvae AP, rectae CP & arcus circularis BP, ac decrementi rectae VP, eadem erit quae linearum PV, PF, PG, PI respective.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:2)

SEARCH

MENU NAVIGATION