라틴어 문장 검색

Exemplar epistulae in forma legis in omnibus provinciis promulgandum erat, ut omnibus populis notum fieret paratos esse Iudaeos in diem illam ad capiendam vindictam de hostibus suis.
(불가타 성경, 에스테르기, 8장13)
Haec enim cunctus prior est, non modo quod hance ille huius mundanae molis conditor deus primam suae habuit ratiocinationis exemplar et ad hance cuncta constituit, quaecunque fabricante ratione per numeros adsignati ordinis invenere concordiam, sed hoc quoque prior artihmetica declaratur, quod, qaecunque natura priora sunt, his sublatis simul posteriora tolluntur;
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:21)
Quare, quoniam prior, ut claruit, arithmeticae vis est, hinc disputationis sumamus exordium.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:45)
Hoc enim fuit principale in animo conditoris exemplar.
(보이티우스, De Arithmetica, Liber primus, De substantia numeri 1:2)
Hoc est autem exemplar:
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:4)
Superioris libri disputatione digestum est, quemadmodum tota inaequalitatis substantia a principe sui generis aequalitate processerit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:1)
Quibus expositis ad sequentem operis seriem conpetens disputatio convertatur.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 23:7)
Huic vero si consequentem quaternarium superposuero, denarius explicatur, qui est tertius actu triangulus, quos per latera disponens ad superioris descriptionis exemplar cunctos triangulos numeros sine ullius dubitationis erroribus pernotabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:5)
Qui autem de natura rerum propinquis investigantes rationibus, quique in matheseos disputatione versati, quid in quaque re esset proprium, subtilissime peritissimeque ediderunt, hi rerum omnium naturas in gemina dividentes hac speculatione distribuunt.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:2)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)
quando quidem et Plato, studiosissimus Pythagorae, secundum eandem disputationem dividit, et Archytas Pythagoricus ante Aristotelem, licet quibusdam sit ambiguum, decem haec praedicamenta constituit.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:7)
Quare ordine disputatio progredietur, si ab ea primo inchoandum sit medietate, quae in numeri differentia non in proportionis speculatione versatur.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 2:3)
Exemplar autem nobis maximum certissimumque sit illud, ubi ex aequalitate diximus omnes inaequalitatis species fundi.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:4)
Post haec igitur tempus est, ut expediamus nunc quiddam nimis utile in Platonica quodam disputatione, quae in Timaei cosmopoeia haud facili cuiquam vel penetrabili ratione versatur.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:1)
Sit autem quoddam huius dispositionis exemplar hoc modo vj viij viiij xij. Has igitur omnes solidas quantitates esse non dubium est. Sex enim nascuntur ex uno bis ter, xij autem ex bis duo ter, horum autem medietates octonarius fit semel duo quater, novenarius vero semel tres ter. Omnes igitur termini cognati sibi et tribus intervallorum demensionibus notati sunt.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:7)

SEARCH

MENU NAVIGATION