라틴어 문장 검색

VS infinite productam seca in K & k ita, ut sit VK ad KS & Vk ad kS ut est Trajectoriae describendae axis transversus ad umbilicorum distantiam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:5)
Junge VR, & rectam VS infinite productam seca in K & k, ita ut sit VK ad SK & Vk ad Sk ut Ellipseos describendae axis transversus ad distantiam umbilicorum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 20:3)
adeo ut axis transversus Trajectoriae describendae ad distantiam umbilicorum ejus, patet ex demonstratis in Casu secundo, & propterea Trajectoriam descriptam ejusdem esse speciei cum describenda:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 20:8)
umbilicis S, H, axe distantiam VH aequante, describatur sectio conica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 22:12)
Si duae ex tribus lineis, puta AZ & BZ aequantur, punctum Z locabitur in perpendiculo bisecante distantiam AB, & locus alius rectilineus invenietur ut supra. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 28:2)
adeo in aequatione quavis, qua relatio inter abscissam AD & ordinatam DG habetur, indeterminatae illae AD & DG ad unicam tantum dimensionem ascendunt, scribendo in hac aequatione OA × AB ÷ ad pro AD, & OA × dg ÷ ad pro DG, producetur aequatio nova, in qua abscissa nova ad & ordinata noua dg ad unicam tantum dimensionem ascendent, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:11)
Indeterminatae ad, dg in aequatione secunda & AD, DG in prima ascendent semper ad eundem dimensionum numerum, & propterea lineae, quas puncta G, g tangunt, sunt ejusdem ordinis Analytici.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:15)
habeant rationem ad invicem, & recta CD, qua puncta indeterminata C, D junguntur secetur in ratione data in K:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 79:2)
Sit illud O. Tangenti cuivis BC parallelam age KL, ad eam distantiam ut centrum O in medio inter parallelas locetur, & acta KL tanget trajectoriam describendam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 98:6)
Jam si area Oualis per finitam aequationem inveniri potest, invenietur etiam per eandem aequationem distantia puncti a polo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:4)
Si quando locus ille P accuratius determinandus sit, inveniatur tum angulus quidam B, qui sit ad angulum graduum 57,29578 quem arcus radio aequalis subtendit, ut est umbilicorum distantia SH ad Ellipseos diametrum AB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:1)
tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:6)
Invento autem angulo motus medii aequati BHP, angulus veri motus HSP & distantia SP in promptu sunt per methodum notissimam Dris.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:15)
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiae locorum a centro, spatia definire quae corpus recta cadendo datis temporibus describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 3:1)
Positis jam inventis, dico quod corporis cadentis velocitas in loco quovis C est ad velocitatem corporis centro B intervallo BC circulum describentis, in dimidiata ratione quam CA, distantia corporis a Circuli vel Hyperbolae vertice ulteriore A, habet ad figurae semidiametrum principalem ½AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 9:1)

SEARCH

MENU NAVIGATION